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ABSTRACT

This paper studies the impact of GPS jamming on GPS
carrier-phase time transfer. To study this issue, at NIST,
we have installed a commercial GPS jamming detector
since 2014 April. During 2014 April — 2015 April, the
detector detected more than 100 jamming events, though
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there had been a few outages of jamming detection. The
jamming events usually last for less than 2 min. We find
that almost all jamming events lead to a significant drop
in the L1 signal-to-noise ratio (SNR) for all observable
GPS satellites. Another thing we notice is that the 3 GPS
receivers which are closer to Broadway, a main street in
Boulder, Colorado, are more likely to be jammed. This
indicates that the jamming source may come from cars
passing by. Although a jamming event causes a
significant drop in L1 SNR, the GPS receiver can still
track the GPS satellites properly for most cases. However,
sometimes, the jamming can be too strong and then a GPS
receiver may lose track of some GPS satellites. This leads
to a GPS-data anomaly. Because of this anomaly, the
carrier-phase time transfer processing re-estimates the
phase ambiguities at the anomaly. Thus, there is often a
time discontinuity at the anomaly. The discontinuity
ranges from a few hundred picoseconds to a few
nanoseconds. Then the next question is what we shall do
when a jamming event occurs? Our earlier study [1]
shows that the 9th-order polynomial curve fitting for the
code and phase measurements can repair a short-term data
anomaly (< 40 min). We apply this technique to repair the
anomaly at jamming and it works well. Thus, we can
eliminate the impact of a short-term jamming (< 40 min)
on carrier-phase time transfer by repairing the GPS data.

I. INTRODUCTION

Global Positioning System (GPS) has been used for time
transfer and time synchronization since 1980 [2]. The
initial GPS time transfer was based on the GPS code
signal. The GPS code time transfer usually provides a 2 —
20 ns accuracy and precision [2-4]. In 1998, people
invented the GPS carrier-phase time transfer technique
which used the GPS carrier wave to do time transfer [5].
It showed much better short-term stability (< 100 ps) than
the GPS code time transfer, because the carrier wave
frequency is much higher than the GPS code chipping
rate. Since then, the GPS carrier-phase time transfer has
drawn a lot of attention [6-11]. After many years of
development, it is now a widely-accepted method for
high-precision time transfer.



However, there are still some issues in GPS carrier-phase
time transfer that have never been studied. For example,
although the impact of GPS jamming on positioning has
been discussed for many years, the impact of jamming on
timing has drawn little attention. Especially, we do not
know of any paper discussing the impact of jamming on
GPS carrier-phase time transfer. This paper focuses on the
relation between GPS jamming and GPS carrier-phase
time transfer.

Section Il discusses the impact of GPS jamming on GPS
carrier-phase time transfer. Section Ill proposes a post-
processing method to eliminate the impact of GPS
jamming on GPS carrier-phase time transfer. Section IV
gives the summary.

Il. IMPACT OF JAMMING ON GPS CARRIER-
PHASE TIME TRANSFER

To study the impact of GPS jamming on GPS carrier-
phase time transfer, we have installed a commercial GPS
jamming detector at NIST since 2014 April. The physical
architecture of the jamming-detecting system is quite
simple. Essentially, a GPS antenna was installed on the
roof of the NIST building. The location of the antenna is
close to Broadway, a main street in Boulder, Colorado.
The antenna receives the GPS signal and sends the signal
to a splitter via a cable. The two output ports of the
splitter are connected to the two input ports of the
jamming detector, respectively. The jamming detector
determines if a jamming event occurs or not, using two
methods which will be discussed in the next paragraph.
The result is saved in a computer.

Here is a description of how the jamming detector works.
The jamming detector uses two methods to detect a
jamming event at the L1 frequency. Each input port of the
jamming detector uses each method. The decision based
on the combination of both methods can improve the
confidence of jamming detection. The first method is
“spectral power detection.” The jamming detector
measures power in the L1 GPS band. The system initially
measures the average power in the band and sets a mask a
little above that. Then when it detects power greater than
that mask, it starts saving the measurements and flags the
beginning of a jamming event. It continues until the
power drops below the mask again. The second method is
“signal-to-noise-ratio (SNR) detection.” The jamming
detector measures the L1 SNR on each satellite each day
for each pass, estimating multipath events. Using these
data, the system sets a mask for minimum SNR for each
satellite as a function of time in each pass. When the SNR
drops below the mask, the system flags a potential
jamming event on that satellite and stores the SNR. It
continues until the SNR resumes above the mask.
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The jamming detector almost continued running from
April 02, 2014 to April 26, 2015, although there have
been a few outages of jamming detection. During the
whole time period, the detector detects 146 jamming
events. Figure 1 shows the statistics of the jamming event
duration. A jamming event usually lasts for less than 2
min.
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Figure 1. Statistics of jamming event duration.

At NIST, we had 7 GPS receivers running properly for
most time of 2014. Three of them have antennas close to
the Broadway. They are NISY, NISX, and NIS2. Note,
NISX stopped working during Aug. 27, 2014 — Sep. 23,
2014. The rest four of them have antennas far away from
Broadway. They are NIST, NISW, NISS, and NISA. We
find that when a jamming event occurs, there is usually an
obvious drop in the L1 SNR of all observable GPS
satellites, for those GPS receivers whose antennas are
close to Broadway. The L2 SNR sometimes has a drop,
and sometimes not. This depends on whether the jamming
aims at L1 only or at both L1 and L2. On the other hand,
for those GPS receivers whose antennas are far away
from Broadway, the SNR at both L1 and L2 is not
affected at a jamming event. This indicates that the
jamming source may come from cars driving on
Broadway. As an example, the jamming detector detected
a jamming event at ~13:56:30 on Sep. 10, 2014. The
jamming event last for 54 s. As a result, we see a
significant drop in the L1 SNR of all observable GPS
satellites at 13:57:00 and 13:57:30, for the NISY receiver
(Figure 2). The red ovals in Figure 2 illustrate the L1 SNR
drop of PRNO7 during the jamming event. From Figure 2,
we can also see that there was no significant drop for L2
SNR. We find the same thing for the NIS2 receiver,
whose antenna is also close to Broadway. We should
mention that the NIS2 receiver can receive both GPS
signals and Glonass signals. And there was no change or
negligible change in the SNR of Glonass signals, during
this jamming event. This indicates that this jamming
event aimed at GPS L1 signal only. On the other hand, for
those receivers whose antennas are far away from
Broadway, we do not find any obvious change of SNR at
L1 and L2. Thus, we know that this jamming event is
very likely to come from a car driving on Broadway.
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Figure 2. RINEX (i.e., Recelver Independent Exchange
Format) data recorded by the NISY receiver, on Sep. 10,
2014,

Another thing we find is that most time, a GPS receiver
can still track the GPS satellites properly at jamming,
although its SNR is dropped as mentioned earlier. In other
words, the code and phase measurements are not affected
by a jamming event, for most cases. As an example, a
jamming event was detected during 16:37:00 — 16:47:00
on Modified Julian Date (MJD) 56839 (i.e. Jul. 01, 2014).
Similar to the above example, we again notice a
significant drop in the L1 SNR. The NISY phase-
measurement data for PRN0O3 during 16:20:00 — 16:55:00
is shown by Figure 3(a). Then we do a high-order (here,
6th-order) polynomial fitting for Figure 3(a) and get the
residual shown by Figure 3(b). The two black dotted lines
in Figure 3(b) mark the time interval of the jamming
event. We can see that there is no outlier/step between the
two black dotted lines. This indicates that there is no error
in the PRNO3 L1 phase measurement when the jamming
event occurs. Similarly, we check all observable GPS
satellites and all types of measurements (L1, L2, C1, P2)
and there is no obvious error in the GPS data at this
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jamming event. This indicates that this jamming event
does not lead to an error in code/phase measurements.
Next, we do the GPS carrier-phase time transfer between
UTC(NIST) and International GNSS Service (IGS) time
scale, using the GPS data on MJD 56839. In this way, we
can tell if this jamming event does have an impact on
carrier-phase time transfer or not. The result is shown by
Figure 4. We can see that for all GPS receivers at NIST,
there is no time-transfer error at ~ 16:37:00 on MJD
56839.

Following the above procedures, we find that for most
jamming events, there is neither an error in the GPS data,
nor an error in the GPS carrier-phase time transfer result.
This indicates that most jamming events have no impact
on GPS carrier-phase time transfer.
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Figure 3. NISY’s PRNO03 L1 phase-measurement data (a)
and its residual (b), during 16:20:00 — 16:55:00. Note, we
have applied the satellite-clock-bias correction for the
phase-measurement data in (a) to remove the satellite
clock noise. The jamming event spans between the two

black dotted lines in (b).
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However, the above conclusion is not true for all jamming
events. In fact, we find 4 jamming events during the
whole year which lead to time-transfer errors for some
GPS receivers. The 4 events were on Nov. 15, 2014, Jan.
23, 2015, Jan. 26, 2015, and Apr. 21, 2015. Here, we
study the case of Jan. 26, 2015, as an example. The
jamming detector found a jamming event at ~15:18:30. It
last for 43 s. Because of this, NISY only observed 1 GPS
satellite at 15:18:30 (MJD 57048.638), NISX observed 0
satellite, and NIS2 observed 2 satellites. Notice, these
three receivers’ antennas are close to Broadway. Other
receivers (NISW, NISS, NISA, and NIST), whose antennas
are far away from Broadway, observed 9 GPS satellites.
The carrier-phase time transfer results of all receivers are
shown by Figure 5. Clearly, NIS2 has a jump of greater
than 5 ns! We can also see that the slope of NIS2 is not
obviously affected. As for NISY and NISX, there is no
obvious jump at jamming. The reason why there can be a
jump at jamming is that the carrier-phase time transfer
processing re-starts at an anomaly, such as jamming, and
re-estimates the phase ambiguities. Since the phase
ambiguities after the anomaly are usually different from
those before the anomaly, we have a jump at jamming.
The jump depends on the code noise and it is a rather
random number. It can be small ( < 100 ps, such as NISY
and NISX), or medium (100 ps — 500 ps), or large ( > 500
ps, such as NIS2).
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Figure 5. GPS carrier-phase time transfer results on MJD
57048 (i.e., Jan. 26, 2015). A jamming event occurs at
approximately 57048.638. This event leads to a carrier-
phase time-transfer error in NIS2. Note, the curves are

shifted for a better comparison.

As another example, on Nov. 15, 2014 (i.e., MJD 56976),
there was a jamming event at ~00:13:30. Because of this,
NISY lost track of 3 GPS satellites, NISX also lost track of
3 satellites, and NIS2 lost track of 1 satellites. The carrier-
phase time transfer results are shown by Figure 6. We can
see that NISY has a jump of about 1 ns at jamming. From
the above two examples, we know that a jamming event
can sometimes make the observed GPS satellite number
fewer than what it should be. This may lead to a jump in
carrier-phase time transfer at jamming. Also, we should
mention that a jamming event typically does not affect the
slope of the carrier-phase time transfer.

To summarize the section, most jamming events do not
affect the carrier-phase time transfer. However, when the
jamming is so strong that we lose track of some GPS
satellites, a timing jump in the carrier-phase time transfer
can happen.
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Figure 6. GPS carrier-phase time transfer results on MJD
56976 (i.e., Nov. 15, 2014). A jamming event occurs at
approximately 56976.009. This event leads to a carrier-
phase time-transfer error in NISY. Note, the curves are
shifted for a better comparison.

I11. ELIMINATING THE IMPACT OF JAMMING
ON GPS CARRIER-PHASE TIME TRANSFER

Now we know that a jamming event can lead to the
scenario of missing data, and thus invalidate the GPS
carrier-phase time transfer result. The next question is that
what we shall do when a jamming event occurs.

In 2015, we proposed a GPS-data-repairing technique
which can eliminate the time discontinuity at a GPS data
error [1]. In that paper, extensive examples were given to
verify the technique. Here, we apply this post-processing
technique to repair the GPS data at jamming. As an
example, we repair the NIS2’s GPS data at ~15:18:30 on
Jan. 26, 2015 (MJD 57048). The GPS carrier-phase time-
transfer result using the repaired data is shown by the red
curve in Figure 7. The black curve in Figure 7, which is
the same as the black curve in Figure 5 except a constant
shift, shows the time-transfer result using the original
NIS2 data. Comparing the red curve with the black curve,
we find that the large jump of around 5 ns in the black
curve disappears. This indicates that we successfully
remove the discontinuity at jamming by the GPS-data-
repairing technique.

However, people may wonder if the red curve represents
the truth? Is the slope in the red curve correct? To answer
these questions, we give the carrier-phase time-transfer
result of another NIST GPS receiver, NISA. NISA has the
same reference time as NIS2. Thus, the time-transfer
result using NISA should be the same as that using NIS2.
As we mentioned earlier, this receiver is far away from
Broadway and thus was not affected by the jamming
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event on MJD 57048. Because of this, the time-transfer
result using NISA (green curve in Figure 7) represents the
true value, and it can be used to verify the correctness of
the red curve. Comparing the red curve with the green
curve, we can see that the red curve does have the same
trend as the green curve. This indicates that the carrier-
phase result using the GPS-data-repairing technique is
close to the true value.

The above example demonstrates that the impact of GPS
jamming on carrier-phase time transfer can be eliminated
by the post-processing GPS-data-repairing technique.
Admittedly, if the jamming lasts for longer than 40 min,
the GPS-data-repairing technique does not work well, as
already mention in [1]. However, this long-term jamming
event is rare. If it does occur, that is the time we have to
find out the jamming source.
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Figure 7. Eliminating the impact of jamming on GPS
carrier-phase time transfer. The jamming event occurs at
around 15:18:00 on MJD 57048. Note, the curves are

shifted for a better comparison.
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IV. CONCLUSIONS

To summarize, we have observed more than 100 jamming
events during 2014 April — 2015 April. Almost all
jamming events lead to a significant drop in L1 SNR for
all GPS satellites. However, the significant drop in SNR
does not often cause a GPS-data anomaly. Thus, for most
cases, the impact of jamming on GPS carrier-phase time
transfer is negligible. Nevertheless, sometimes, the
jamming can be too strong and we may lose track of some
GPS satellites. For these scenarios, the GPS carrier-phase
time transfer can possibly have a discontinuity of 100 ps —
5 ns. Statistically, NIST has had 4 strong jamming events



which led to time-transfer errors, during a whole year. In
this paper, we also demonstrate that the GPS-data-
repairing technique successfully eliminates the impact of
jamming (< 40 min) on carrier-phase time transfer. This
can improve the robustness of carrier-phase time transfer.
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