
An Auto-Regressive Moving-Average Time Scale
Algorithm (ARMA) for Synchronizing Networked

Clocks

Judah Levine
Time and Frequency Division and JILA

NIST and the University of Colorado
Boulder, Colorado

BIOGRAPHY

 Judah Levine is a Fellow of the National Institute
of Standards and Technology (NIST) and is also a Fellow
of JILA, an institute operated jointly by NIST and the
University of Colorado. He received his Ph.D. in physics
from New York University in 1966. He is a member of
the IEEE and a Fellow of the American Physical Society.
Dr. Levine designed and implemented the time scales
AT1 and UTC(NIST), which provide the reference signals
for all of the NIST time and frequency services. In
addition, he designed and built the servers that support the
Automated Computer Time Service (ACTS) and the
Internet Time Service (ITS), which provide time and
frequency information to users in a number of different
digital formats. The NIST ITS servers can be accessed
through client software built-in to a number of different
computer operating systems and receives more than 15
billion timing requests per day. Dr. Levine was the
recipient of the PTTI Distinguished Service Award in
2009, the Presidential Rank Award in 2011, and the IEEE
International Frequency Control Symposium Rabi Award
in 2013.

ABSTRACT

 I will report on a study of the usefulness of
ARMA time scale algorithms to synchronize clocks on a
digital network. The algorithm acquires periodic time
differences between a local system clock and a remote
time server by means of any of the standard message
formats such as the format used by the Network Time
Protocol. It models the current time difference as a linear
combination of previous time states plus additive noise
and uses the model to adjust the local system clock. The
algorithm is more flexible than the traditional methods,
which are based on physical parameters such as frequency
and frequency drift. The ARMA model has a finite
impulse response and is therefore able to cope with the
non-stationary outliers that characterize the fluctuations in
the message delay on a wide-area network. I will compare

this method with the frequency lock loop (FLL) algorithm
that is currently used to synchronize the time servers
operated by NIST. Both methods take advantage of the
free-running stability of the clock in the local system,
which facilitates the detection of outliers without the need
to query multiple remote servers in most situations. Either
method is generally more efficient than the phase-lock
loop process that is widely used in network
synchronization applications.

INTRODUCTION

 The National Institute of Standards and
Technology currently operates an ensemble of time
servers that respond to requests for time in a number of
standard formats. The servers receive approximately
150,000 requests per second; approximately 95% of these
requests are for time in the Network Time Protocol (NTP)
format.1 This format estimates the transmission delay
between the client and the server as one-half of the
measured round-trip delay. The accuracy of this estimate
depends on the validity of the assumption that the delay is
symmetric – that the inbound and outbound delays are
equal. This assumption is valid for local networks or those
that have only a small number of network elements such
as routers and switches. Although it may be reasonably
accurate for wide-area networks on the average, there are
often large deviations from a symmetric delay, and these
deviations compromise the accuracy of the time
synchronization process.

SYNCHRONIZATION STATISTICS

 The initial design of the algorithm that was used
to synchronize the NIST time servers was based on
statistical characterizations of the stability of the clock in
the client system and the variation in the network delay.
The model treated these parameters as stationary, with
well-defined variances that could be characterized with
the machinery of the Allan variance.2 The parameters of
the synchronization algorithm were chosen so that the

remote clock seen through the network channel had a
smaller variance than the clock in the local system.3 Fig. 1
shows a typical example of this type of analysis.

Fig. 1. The two-sample Allan deviation (square root of the
Allan Variance) of the free-running stability of the clock
in a typical general-purpose computer. The points are the
measured time-difference values and the straight lines
help to identify the underlying noise types.

 The figure shows a log-log display of the two-
sample Allan deviation for the free-running clock
oscillator in a typical general-purpose computer system.
The points in the figure were computed by using an
external atomic clock to generate a system interrupt every
second and then reading the system time on every
interrupt. This procedure evaluates the software clock as
it is seen by a user process. The physical clock oscillator
is not observable. The latency of the measurement
process itself was tested and found to be on the order of a
few microseconds, which is negligible in this
configuration. The three straight lines in the figure help to
identify the noise processes that are important for
different averaging time domains. For averaging times, τ,
less than about 104 s, the Allan deviation, σy(τ), is
approximately 0.0011/τ; it is approximately 1.1×10-5/√τ
for averaging times between 104 s and 5×104 s and
approximately 5×10-8 for averaging times between 5×104
s and 1 day.
 The second step in the design of a
synchronization algorithm is to estimate the statistical
characteristics of the data channel back to the reference
clock. For the NIST time servers, the link between the
time server and the NIST clock ensemble could be
characterized as white phase noise with an Allan variance
of approximately 2×10-3/τ. This variance is dominated by
the noise in the channel delay and the local measurement

process, and is essentially independent of the
characteristics of the remote reference time system. The
two noise contributions will be equal when

s00033~

101.1102 53

τ
ττ

−− ×
=

×
 (1)

and the remote reference clock seen through the
communications channel will be more stable for all
averaging times greater than this value. Conversely, the
free-running stability of the local clock oscillator is more
stable than the data received over the communications
channel from the remote system at shorter periods.
 Since the link between a time server and the
NIST clock ensemble is characterized by white phase
noise, it is possible to reduce the variance of these data by
averaging consecutive one-second measurements. For
example, if the algorithm uses the average of five
consecutive messages, the standard deviation of the
received data is improved by √5, and the cross-over time
is decreased by a factor of 5. This is a specific example of
the more general principle that the interval between
calibration messages need not be the same as the interval
between adjustments of the local clock.4 The optimum
values for these two parameters are determined by
different considerations.

LIMITATIONS OF THE METHOD

 The algorithm described in the previous section
worked very well for many years, and was able to
synchronize the clock in a time server with an uncertainty
of less than 1 ms for averaging times on the order of the
averaging time in eq. 1. However, it depended on the
assumption that the statistics could be modeled as
stationary processes based on physical parameters such as
time and frequency with corresponding noise
contributions. Furthermore, the models were relatively
easy to implement because only one noise source
dominated the variance at any averaging time.
 The most serious challenge to this method is the
assumption that the statistics are stationary.
Unfortunately, this is no longer true in many situations.
For example, fig. 2 shows the time differences measured
every 60 s between two systems that are linked by a
connection over the public Internet. Both systems are
synchronized to UTC, so that the expected time
differences should all be zero.
 The average round-trip network delay between
the two systems was about 200 ms. The algorithm models
the one-way delay as one-half of this value, or 100 ms. If
the actual delay on any cycle was completely asymmetric,
the model estimate will be wrong by 100 ms. However,

the measured round-trip delays associated with the spikes
are much larger – often approaching 0.5 s in magnitude.
These large delays are also very asymmetric, and
introduce timing errors of up to 0.25 s. If there were only
a small number of these spikes, it would be practical to
ignore any measurement that had an unusually large value
for the measured delay. (David Mills names this strategy
the “huff-n-puff’ filter in ref. 1) The very large number of
these problem measurements makes this strategy
problematic.

Fig. 2. The time differences between two systems that are
both synchronized to UTC. The time differences are
measured by means of messages transmitted over the
Internet in the Network Time Protocol format, which
estimates the one-way delay as one-half of the measured
round-trip value. The number of negative spikes is much
larger than the number of positive ones, indicating that the
apparent delay for a message traveling from JILA.43 to
SYS2 was often much larger than the apparent delay in
the opposite direction. The analysis is not sensitive to the
sign of a spike.

 The formal standard deviation of the data in the
figure is only 26 ms, but it is clear that the observed
variation is not stationary and would not be well
characterized by this parameter or by an Allan-variance
estimate of the stability. The problem is not the magnitude
of the round-trip delay, since this is measured on every
message exchange. Rather, it is the very large and rapidly
varying asymmetry of the delay, which violates the
fundamental assumption of the two-way protocol that the
one-way delay is well characterized as one-half of the
measured round-trip value.
 Since the data shown in fig. 2 cannot be
characterized by means of the time and frequency noise
parameters, I have studied the usefulness of other models
that are not derived from the physical parameters of time

and frequency that are normally used to characterize
clocks and oscillators.

AUTO-REGRESSIVE MODELS

 An auto-regressive model characterizes the state
of a clock by using only a single parameter – the time
difference between the clock and a reference device. The
time difference at epoch tj, denoted by xj, is modeled as a
linear combination of previous values of the state:

𝑥𝑥𝑗𝑗 = ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑗𝑗−𝑖𝑖𝑖𝑖_𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖=1 (2)

where the ai are the coefficients of the auto-regressive
model. The time difference measured at epoch tj is Xj, and
the next step in a standard analysis would be to adjust the
auto-regressive coefficients so as to minimize the RMS
time difference, Xj-xj, averaged over j.5,6,7 The number of
auto-regressive coefficients could also be varied.
 This relatively simple method is not adequate for
these data because there is a significant probability that
the measured time difference is a spike. In addition to
introducing a time error when the bad measurement is
received, a spike that is not detected will cause more
trouble because it will be incorporated into the auto-
regressive model and will introduce additional time errors
into subsequent data. (This problem is not unique to auto-
regressive analyses. All time scale algorithms have some
sort of “reset” procedure to prevent a bad measurement
from corrupting the state parameters of a clock.)
 After some experimentation, the method we have
developed detects a spike as a deviation from a running-
average of the variance of the time-difference data. This
method works well if the spikes are not too close together,
so that the running-average variance is an accurate
measure of the underlying measurements. The spike
detector is triggered when a time-difference measurement
exceeds three times the magnitude of the running-average
variance. This criterion has no difficulty detecting the
large spikes in the figure, but it accepts data that would
probably be rejected by eye. There is no algorithmic fix
for this problem because the data are not well-
characterized by a stationary variance.
 Since the time-difference measurements are
acquired every minute, our initial assumption is that the
underlying time differences are well-characterized by
white phase noise, and the initial values of the auto-
regressive coefficients effectively estimate the current
time difference as the average of the previous
measurements after the spikes have been removed as
described above. (In other words, the initial values of all
of the five auto-regressive coefficients are equal to 0.2.)
When a spike is detected, the algorithm effectively goes
into a hold-over mode, in which it replaces the current
measured time difference with the auto-regressive
estimate of the time state. It treats continuous repetitive

“spikes” as a true time step of the local clock, so that a
true time step is recognized after some delay. The
algorithm shares the weakness of most other algorithms in
that it is difficult to detect a frequency step of the local
clock oscillator unless the step is large enough to produce
a large time dispersion. Such frequency steps are unusual,
and are generally an indication of a hardware failure.
 Fig. 3 shows the output time differences
predicted by a 5-state auto-regressive model applied to the
data in fig. 2. The five auto-regressive parameters were
initially set equal to 0.2, and the algorithm adjusted them
dynamically by about ±10%. The data in the figure can be
characterized approximately as white phase noise, with a
mean of 0.022 ms and a standard deviation of 0.22 ms.
The value of the mean is much small than the standard
deviation and is therefore consistent with a mean of zero.

Fig. 3. The time differences between SYS2 and JILA.43
estimated by the auto-regressive process as described in
the text. The standard deviation of the data in the figure is
0.22 ms, which is consistent with a mean of zero,
confirming the assumption that both systems are
independently synchronized to UTC.

UNSYNCHRONIZED CLOCK TEST

 The clocks at both ends of the network link were
independently synchronized to UTC in the experiment
described in the previous section. Therefore, the auto-
regressive model did not contain a term to estimate a
possible frequency offset in the measured time
differences.
 In a second experiment, we relaxed this
condition, and used time-difference data between a
system whose clock was free-running and a remote time
server synchronized to UTC. We used the ARMA
estimator to calculate the correction that we would have
applied to the time of the local clock and we then
analyzed the residuals of that simulation.

Fig. 4. The time differences, measured every minute,
between the free-running clock in system JILA.41 and the
remote system SYS9, which was synchronized to UTC.
The JILA.41 system had an initial time offset of -270 s
and a rate offset of -1.92 s/day, with respect to the remote
system, and a straight line with these parameters has been
removed from the data in the plot for clarity.

 Fig.4 shows the time differences, measured
every 60 s, between a local system with a free-running
clock and a remote time server. A constant frequency
offset of -1.96 s/day and an initial time offset of -270 s
have been subtracted from the data in the display. These
offsets were removed only for the display, and were not
removed in the analysis.
 If we analyze these data with a 5-point auto-
regressive model, the frequency offset of -1.96 s/day
produces a time dispersion of approximately -1.4 ms per
minute. It is difficult to compute a robust estimate of this
frequency offset if only the 5 points of the auto-regressive
algorithm are used because the time dispersion due to the
frequency offset is not sufficiently larger than the
background white phase noise. Therefore, a more
sophisticated analysis must be developed in which the
auto-regressive equation provides an estimate of the time
offset at any epoch, and the frequency offset is estimated
by combining a number of auto-regressive time difference
estimates separated by 1200 s, or four 5-point one-minute
measurement groups. (It is possible in principle to modify
the auto-regressive coefficients to estimate the frequency
offset as well as the time offset by using an auto-
regressive integrated algorithm8. These models proved to
be unstable because they did not provide an adequate
separation between noise in the time-differences and the
time dispersion due to frequency noise. I will address this
point in the conclusions.)
 Fig. 5 shows the time differences estimated by
using the modified auto-regressive model described in the
previous paragraph.

Fig. 5. The residuals of the time adjustments that were
calculated by the modified auto-regressive algorithm
applied to the input data shown in fig. 4 and the measured
time differences, with outliers removed as described in
the text.

 The data in the figure have a mean of 0.05 ms
and a formal standard deviation of 0.24 ms. The mean is
not statistically different from zero, and there is no
statistically significant residual rate offset. The initial time
offset and the rate offset have been modeled correctly,
and the residuals are dominated by the white frequency
noise of the local clock oscillator.

SUMMARY AND CONCLUSIONS

 The auto-regressive model has been applied to
time differences between the clocks of two systems that
are compared by messages transmitted in the Network
Time Protocol Format over the public Internet. The
protocol estimates the one-way delay between the two
systems as one-half of the measured round-trip value. The
accuracy of this estimate is limited by the symmetry of
the round-trip delay, and this assumption of a symmetric
delay is often not appropriate for a message exchange
over the public Internet.
 The auto-regressive model detects departures
from delay symmetry by comparing each measured time
difference with a weighted sum of the previous time states
of the local clock. The method replaces the measured time
difference with the auto-regressive estimate when a bad
measurement is detected.
 The method is successful because the one-minute
interval between measurements is short enough so that
both the deterministic and stochastic frequency of the
local clock do not result in a large time dispersion over
the elapsed time of the auto-regressive estimate. The
white phase noise of the local clock is attenuated by the
effective averaging of the auto-regressive process.

 On the other hand, the short interval between
measurements makes it difficult to obtain a robust
estimate of the deterministic frequency offset of the local
clock. Although an auto-regressive integrated analysis
can provide such an estimate in principle, attempts to use
this method to estimate the deterministic frequency offset
were not successful, and an estimate derived from
multiple auto-regressive estimates, separated by a longer
time interval, was found to produce more robust estimates
of the frequency.
 The auto-regressive method provides a useful
complement to the methods based on statistics and the
Allan variance that were described in the introduction.
The auto-regressive method is particularly well suited to
time comparisons made by means of messages exchanged
over the public Internet, because these messages usually
cannot be well characterized by the standard statistical
estimators.

REFERENCES

[1] David L. Mills, Computer Network Time
Synchronization, Boca Raton, Florida, CRC Press, Second
edition, pp. 64 ff.
[2] D. W. Allan, “Time and frequency (time-domain)
characterization, estimation, and prediction of precision
clocks and oscillators,” IEEE Trans. UFFC, Vol. 34, pp.
647-654, November 1987.
[3] Judah Levine, An Algorithm for Synchronizing a
Clock when the data are received over a network with an
unstable delay, IEEE Trans. UFFC, in press (2016).

[4] Judah Levine, The Statistical Model of Atomic Clocks
and the design of Time Scales, Rev. Sci. Inst., vol. 83,
012201-28 (2012).
[5] A. Lepek, Clock Prediction and Characterization,
Metrologia, Vol. 34, pp. 379-386, 1997.
[6] Lara S. Schmidt, Atomic Clock Models Using
Fractionally Integrated Noise Processes, Metrologia, Vol.
40, pp. S305-S311, 2003
[7] L. Schmidt, L. Breakiron and C. Ekstrom, Fractional
Difference Pre-Whitening in Atomic Clock Modeling,
Proc. 34th Annual Precise Time and Time Interval
Meeting, pp 473-480, 2002.
[8] George E. P. Box and Gwilyn M. Jenkins, Time Series
Analysis, Forecasting and Control, San Francisco,
Holden-Day, 1970, Chapter 4.

