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ABSTRACT 
 
 I will report on a study of the usefulness of 
ARMA time scale algorithms to synchronize clocks on a 
digital network. The algorithm acquires periodic time 
differences between a local system clock and a remote 
time server by means of any of the standard message 
formats such as the format used by the Network Time 
Protocol. It models the current time difference as a linear 
combination of previous time states plus additive noise 
and uses the model to adjust the local system clock. The 
algorithm is more flexible than the traditional methods, 
which are based on physical parameters such as frequency 
and frequency drift. The ARMA model has a finite 
impulse response and is therefore able to cope with the 
non-stationary outliers that characterize the fluctuations in 
the message delay on a wide-area network. I will compare 

this method with the frequency lock loop (FLL) algorithm 
that is currently used to synchronize the time servers 
operated by NIST. Both methods take advantage of the 
free-running stability of the clock in the local system, 
which facilitates the detection of outliers without the need 
to query multiple remote servers in most situations. Either 
method is generally more efficient than the phase-lock 
loop process that is widely used in network 
synchronization applications. 
 
INTRODUCTION 
 
 The National Institute of Standards and 
Technology currently operates an ensemble of time 
servers that respond to requests for time in a number of 
standard formats. The servers receive approximately 
150,000 requests per second; approximately 95% of these 
requests are for time in the Network Time Protocol (NTP) 
format.1 This format estimates the transmission delay 
between the client and the server as one-half of the 
measured round-trip delay. The accuracy of this estimate 
depends on the validity of the assumption that the delay is 
symmetric – that the inbound and outbound delays are 
equal. This assumption is valid for local networks or those 
that have only a small number of network elements such 
as routers and switches. Although it may be reasonably 
accurate for wide-area networks on the average, there are 
often large deviations from a symmetric delay, and these 
deviations compromise the accuracy of the time 
synchronization process.  
 
SYNCHRONIZATION STATISTICS 
 
 The initial design of the algorithm that was used 
to synchronize the NIST time servers was based on 
statistical characterizations of the stability of the clock in 
the client system and the variation in the network delay. 
The model treated these parameters as stationary, with 
well-defined variances that could be characterized with 
the machinery of the Allan variance.2 The parameters of 
the synchronization algorithm were chosen so that the 



remote clock seen through the network channel had a 
smaller variance than the clock in the local system.3 Fig. 1 
shows a typical example of this type of analysis. 
 

Fig. 1. The two-sample Allan deviation (square root of the 
Allan Variance) of the free-running stability of the clock 
in a typical general-purpose computer. The points are the 
measured time-difference values and the straight lines 
help to identify the underlying noise types. 
 
 The figure shows a log-log display of the two-
sample Allan deviation for the free-running clock 
oscillator in a typical general-purpose computer system. 
The points in the figure were computed by using an 
external atomic clock to generate a system interrupt every 
second and then reading the system time on every 
interrupt. This procedure evaluates the software clock as 
it is seen by a user process. The physical clock oscillator 
is not observable.  The latency of the measurement 
process itself was tested and found to be on the order of a 
few microseconds, which is negligible in this 
configuration. The three straight lines in the figure help to 
identify the noise processes that are important for 
different averaging time domains. For averaging times, τ, 
less than about 104 s, the Allan deviation, σy(τ), is 
approximately 0.0011/τ; it is approximately 1.1×10-5/√τ 
for averaging times between 104 s and  5×104 s and 
approximately 5×10-8 for averaging times between 5×104 
s and 1 day. 
 The second step in the design of a 
synchronization algorithm is to estimate the statistical 
characteristics of the data channel back to the reference 
clock. For the NIST time servers, the link between the 
time server and the NIST clock ensemble could be 
characterized as white phase noise with an Allan variance 
of approximately 2×10-3/τ. This variance is dominated by 
the noise in the channel delay and the local measurement 

process, and is essentially independent of the 
characteristics of the remote reference time system. The 
two noise contributions will be equal when 
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and the remote reference clock seen through the 
communications channel will be more stable for all 
averaging times greater than this value. Conversely, the 
free-running stability of the local clock oscillator is more 
stable than the data received over the communications 
channel from the remote system at shorter periods.  
 Since the link between a time server and the 
NIST clock ensemble is characterized by white phase 
noise, it is possible to reduce the variance of these data by 
averaging consecutive one-second measurements. For 
example, if the algorithm uses the average of five 
consecutive messages, the standard deviation of the 
received data is improved by √5, and the cross-over time 
is decreased by a factor of 5. This is a specific example of 
the more general principle that the interval between 
calibration messages need not be the same as the interval 
between adjustments of the local clock.4 The optimum 
values for these  two parameters are determined by 
different considerations. 
 
LIMITATIONS OF THE METHOD 
 
 The algorithm described in the previous section 
worked very well for many years, and was able to 
synchronize the clock in a time server with an uncertainty 
of less than 1 ms for averaging times on the order of the 
averaging time in eq. 1. However, it depended on the 
assumption that the statistics could be modeled as 
stationary processes based on physical parameters such as 
time and frequency with corresponding noise 
contributions. Furthermore, the models were relatively 
easy to implement because only one noise source 
dominated the variance at any averaging time.  
 The most serious challenge to this method is the 
assumption that the statistics are stationary. 
Unfortunately, this is no longer true in many situations. 
For example, fig. 2 shows the time differences measured 
every 60 s between two systems that are linked by a 
connection over the public Internet. Both systems are 
synchronized to UTC, so that the expected time 
differences should all be zero.  
 The average round-trip network delay between 
the two systems was about 200 ms. The algorithm models 
the one-way delay as one-half of this value, or 100 ms. If 
the actual delay on any cycle was completely asymmetric, 
the model estimate will be wrong by 100 ms. However, 



the measured round-trip delays associated with the spikes 
are much larger – often approaching 0.5 s in magnitude. 
These large delays are also very asymmetric, and 
introduce timing errors of up to 0.25 s. If there were only 
a small number of these spikes, it would be practical to 
ignore any measurement that had an unusually large value 
for the measured delay. (David Mills names this strategy 
the “huff-n-puff’ filter in ref. 1) The very large number of 
these problem measurements makes this strategy 
problematic. 
 

 
Fig. 2. The time differences between two systems that are 
both synchronized to UTC. The time differences are 
measured by means of messages transmitted over the 
Internet in the Network Time Protocol format, which 
estimates the one-way delay as one-half of the measured 
round-trip value. The number of negative spikes is much 
larger than the number of positive ones, indicating that the 
apparent delay for a message traveling from JILA.43 to 
SYS2 was often much larger than the apparent delay in 
the opposite direction. The analysis is not sensitive to the 
sign of a spike. 
 
 The formal standard deviation of the data in the 
figure is only 26 ms, but it is clear that the observed 
variation is not stationary and would not be well 
characterized by this parameter or by an Allan-variance 
estimate of the stability. The problem is not the magnitude 
of the round-trip delay, since this is measured on every 
message exchange. Rather, it is the very large and rapidly 
varying asymmetry of the delay, which violates the 
fundamental assumption of the two-way protocol that the 
one-way delay is well characterized as one-half of the 
measured round-trip value. 
 Since the data shown in fig. 2 cannot be 
characterized by means of the time and frequency noise 
parameters, I have studied the usefulness of other models 
that are not derived from the physical parameters of time 

and frequency that are normally used to characterize 
clocks and oscillators. 
 
AUTO-REGRESSIVE MODELS 
 
 An auto-regressive model characterizes the state 
of a clock by using only a single parameter – the time 
difference between the clock and a reference device. The 
time difference at epoch tj, denoted by xj, is modeled as a 
linear combination of previous values of the state: 
 

𝑥𝑥𝑗𝑗 = ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑗𝑗−𝑖𝑖𝑖𝑖_𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖=1   (2) 

 
where the ai are the coefficients of the auto-regressive 
model. The time difference measured at epoch tj is Xj, and 
the next step in a standard analysis would be to adjust the 
auto-regressive coefficients so as to minimize the RMS 
time difference, Xj-xj, averaged over j.5,6,7 The number of 
auto-regressive coefficients could also be varied. 
 This relatively simple method is not adequate for 
these data because there is a significant probability that 
the measured time difference is a spike. In addition to 
introducing a time error when the bad measurement is 
received, a spike that is not detected will cause more 
trouble because it will be incorporated into the auto-
regressive model and will introduce additional time errors 
into subsequent data. (This problem is not unique to auto-
regressive analyses. All time scale algorithms have some 
sort of “reset” procedure to prevent a bad measurement 
from corrupting the state parameters of a clock.) 
 After some experimentation, the method we have 
developed detects a spike as a deviation from a running-
average of the variance of the time-difference data. This 
method works well if the spikes are not too close together, 
so that the running-average variance is an accurate 
measure of the underlying measurements. The spike 
detector is triggered when a time-difference measurement 
exceeds three times the magnitude of the running-average 
variance. This criterion has no difficulty detecting the 
large spikes in the figure, but it accepts data that would 
probably be rejected by eye. There is no algorithmic fix 
for this problem because the data are not well-
characterized by a stationary variance. 
 Since the time-difference measurements are 
acquired every minute, our initial assumption is that the 
underlying time differences are well-characterized by 
white phase noise, and the initial values of the auto-
regressive coefficients effectively estimate the current 
time difference as the average of the previous 
measurements after the spikes have been removed as 
described above. (In other words, the initial values of all 
of the five auto-regressive coefficients are equal to 0.2.) 
When a spike is detected, the algorithm effectively goes 
into a hold-over mode, in which it replaces the current 
measured time difference with the auto-regressive 
estimate of the time state. It treats continuous repetitive 



“spikes” as a true time step of the local clock, so that a 
true time step is recognized after some delay. The 
algorithm shares the weakness of most other algorithms in 
that it is difficult to detect a frequency step of the local 
clock oscillator unless the step is large enough to produce 
a large time dispersion. Such frequency steps are unusual, 
and are generally an indication of a hardware failure. 
 Fig. 3 shows the output time differences 
predicted by a 5-state auto-regressive model applied to the 
data in fig. 2. The five auto-regressive parameters were 
initially set equal to 0.2, and the algorithm adjusted them 
dynamically by about ±10%. The data in the figure can be 
characterized approximately as white phase noise, with a 
mean of 0.022 ms and a standard deviation of 0.22 ms. 
The value of the mean is much small than the standard 
deviation and is therefore consistent with a mean of zero. 

 
Fig. 3. The time differences between SYS2 and JILA.43 
estimated by the auto-regressive process as described in 
the text. The standard deviation of the data in the figure is 
0.22 ms, which is consistent with a mean of zero, 
confirming the assumption that both systems are 
independently synchronized to UTC. 
 
UNSYNCHRONIZED CLOCK TEST 
 
 The clocks at both ends of the network link were 
independently synchronized to UTC in the experiment 
described in the previous section. Therefore, the auto-
regressive model did not contain a term to estimate a 
possible frequency offset in the measured time 
differences.   
 In a second experiment, we relaxed this 
condition, and used time-difference data between a 
system whose clock was free-running and a remote time 
server synchronized to UTC. We used the ARMA 
estimator to calculate the correction that we would have 
applied to the time of the local clock and we then 
analyzed the residuals of that simulation. 

 
Fig. 4. The time differences, measured every minute, 
between the free-running clock in system JILA.41 and the 
remote system SYS9, which was synchronized to UTC. 
The JILA.41 system had an initial time offset of -270 s 
and a rate offset of -1.92 s/day, with respect to the remote 
system, and a straight line with these parameters has been 
removed from the data in the plot for clarity. 
 
 Fig.4 shows the time differences, measured 
every 60 s, between a local system with a free-running 
clock and a remote time server. A constant frequency 
offset of -1.96 s/day and an initial time offset of -270 s 
have been subtracted from the data in the display. These 
offsets were removed only for the display, and were not 
removed in the analysis. 
 If we analyze these data with a 5-point auto-
regressive model, the frequency offset of -1.96 s/day 
produces a time dispersion of approximately -1.4 ms per 
minute. It is difficult to compute a robust estimate of this 
frequency offset if only the 5 points of the auto-regressive 
algorithm are used because the time dispersion due to the 
frequency offset is not sufficiently larger than the 
background white phase noise. Therefore, a more 
sophisticated analysis must be developed in which the 
auto-regressive equation provides an estimate of the time 
offset at any epoch, and the frequency offset is estimated 
by combining a number of auto-regressive time difference 
estimates separated by 1200 s, or four 5-point one-minute 
measurement groups. (It is possible in principle to modify 
the auto-regressive coefficients to estimate the frequency 
offset as well as the time offset by using an auto-
regressive integrated algorithm8. These models proved to 
be unstable because they did not provide an adequate 
separation between noise in the time-differences and the 
time dispersion due to frequency noise. I will address this 
point in the conclusions.) 
 Fig. 5 shows the time differences estimated by 
using the modified auto-regressive model described in the 
previous paragraph. 
 



 
Fig. 5. The residuals of the time adjustments that were 
calculated by the modified auto-regressive algorithm 
applied to the input data shown in fig. 4 and the measured 
time differences, with outliers removed as described in 
the text. 
 
 The data in the figure have a mean of 0.05 ms 
and a formal standard deviation of 0.24 ms. The mean is 
not statistically different from zero, and there is no 
statistically significant residual rate offset. The initial time 
offset and the rate offset have been modeled correctly, 
and the residuals are dominated by the white frequency 
noise of the local clock oscillator.  
 
SUMMARY AND CONCLUSIONS 
 
 The auto-regressive model has been applied to 
time differences between the clocks of two systems that 
are compared by messages transmitted in the Network 
Time Protocol Format over the public Internet.  The 
protocol estimates the one-way delay between the two 
systems as one-half of the measured round-trip value. The 
accuracy of this estimate is limited by the symmetry of 
the round-trip delay, and this assumption of a symmetric 
delay is often not appropriate for a message exchange 
over the public Internet.  
 The auto-regressive model detects departures 
from delay symmetry by comparing each measured time 
difference with a weighted sum of the previous time states 
of the local clock. The method replaces the measured time 
difference with the auto-regressive estimate when a bad 
measurement is detected. 
 The method is successful because the one-minute 
interval between measurements is short enough so that 
both the deterministic and stochastic frequency of the 
local clock do not result in a large time dispersion over 
the elapsed time of the auto-regressive estimate. The 
white phase noise of the local clock is attenuated by the 
effective averaging of the auto-regressive process. 

 On the other hand, the short interval between 
measurements makes it difficult to obtain a robust 
estimate of the deterministic frequency offset of the local 
clock. Although an auto-regressive integrated analysis 
can provide such an estimate in principle, attempts to use 
this method to estimate the deterministic frequency offset 
were not successful, and an estimate derived from 
multiple auto-regressive estimates, separated by a longer 
time interval, was found to produce more robust estimates 
of the frequency. 
 The auto-regressive method provides a useful 
complement to the methods based on statistics and the 
Allan variance that were described in the introduction. 
The auto-regressive method is particularly well suited to 
time comparisons made by means of messages exchanged 
over the public Internet, because these messages usually 
cannot be well characterized by the standard statistical 
estimators.  
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