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Probability Distributions and Confidence 
Intervals for Simulated Power Law Noise

Neil Ashby

Abstract—A method for simulating power law noise in 
clocks and oscillators is presented based on modification of 
the spectrum of white phase noise, then Fourier transforming 
to the time domain. Symmetric real matrices are introduced 
whose traces—the sums of their eigenvalues—are equal to the 
Allan variances, in overlapping or non-overlapping forms, as 
well as for the corresponding forms of the modified Allan vari-
ance. We show that the standard expressions for spectral den-
sities, and their relations to Allan variance, are obtained with 
this method. The matrix eigenvalues determine probability 
distributions for observing a variance at an arbitrary value of 
the sampling interval τ, and hence for estimating confidence 
in the measurements. Examples are presented for the common 
power-law noises. Extension to other variances such as the Ha-
damard variance, and variances with dead time, are discussed.

I. Introduction

The characterization of clock performance by means of 
average measures such as Allan variance, Hadamard 

variance, Theo, and modified forms of such variances, is 
widely applied within the time and frequency community 
as well as by most clock and oscillator fabricators. Such 
variances are measured by comparing the times tk on a 
device under test, with the times at regular intervals kτ0 
on a perfect reference, or at least on a better reference. 
Imperfections in performance of the clock under test are 
studied by analyzing noise in the time deviation sequence 
xk = tk − kτ0, or the fractional frequency difference during 
the sampling interval τ = sτ0:

	 ∆k s k s kx x s,
(1)

0= ( ) ( ).+ − / τ 	 (1)

The frequency spectrum of fractional frequency differ-
ences can usually be adequately characterized by linear 
superposition of a small set of types of power law noise. 
The frequency spectrum of the fractional frequency dif-
ferences of a particular noise type is given by a one-sided 
spectral density [1]

	 S f h f fy( ) = , > 0.α
α 	 (2)

[The units of Sy( f ) are Hz−1.] For the common power-law 
noise types, α varies in integral steps from +2 down to −2, 
corresponding to white phase modulation, flicker phase 

modulation, white frequency modulation, flicker frequency 
modulation, and random walk of frequency, respectively.

Simulation of clock noise can be extremely useful in 
testing software algorithms that use various windowing 
functions and Fourier transform algorithms to extract 
spectral density and stability information from measured 
time deviations, and especially in predicting the probabil-
ity for observing a particular value of some clock stability 
variance. This paper develops a simple simulation method 
for a time-difference sequence that guarantees the average 
spectral density will have some chosen average power law 
dependence. Expressions for the common variances and 
their modified forms are derived here which agree with 
expressions found in the literature, with some exceptions. 
This approach also leads to predictions of probabilities 
for observing a variance of a particular type at particular 
values of the averaging time. A broad class of probability 
functions naturally arises. These only rarely correspond to 
chi-squared distributions.

The present approach to noise simulation was motivat-
ed by difficulties in applying methods such as those dis-
cussed in [2]–[4] to acceleration noise in spacecraft at very 
low frequencies [5]. Noisy accelerations of spacecraft can 
arise from causes such as fluctuations in solar radiation 
pressure, anisotropic thermal radiation, charged particle 
drag, etc., and after being integrated twice, can give rise 
to a spectral density of displacement noise that diverges 
at low frequencies faster than any known power-law clock 
noise. For example, an acceleration noise amplitude pro-
portional to f −1 integrated twice gives rise to a displace-
ment noise spectral density proportional to f −6. Study of 
such acceleration noise is important in establishing error 
budgets of space missions in which spacecraft are tracked 
by means of electromagnetic signals. In [6], the present 
method was applied to the analysis of active galactic nu-
clei (AGN) light curves and to improving estimates of er-
rors in period searches by epoch-folding techniques. In [7], 
it was applied to the analysis of flicker-like phase noise 
with a spectral density that behaves as f −0.83.

Ref. [2] emphasizes the role of causality in the analysis 
of noise driving a linear system, and presents an algorithm 
incorporating this feature into the time series itself. The 
methodology used here is different: the time series pro-
duced by the present method is periodic; the frequency 
spectrum from which it is derived does not exhibit alias-
ing or leakage, although these effects can be introduced 
by modifying the time series, e.g., by undersampling or 
windowing. Various windowing algorithms could be com-
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pared, for example, by generating the periodic time series, 
applying a window to the data, then transforming back to 
the frequency domain.

This paper is organized as follows: Section II introduc-
es the basic simulation method and Section III applies 
the method to the overlapping Allan variance. Section 
IV shows how diagonalization of the averaged squared 
second-difference operator, applied to the simulated time 
series, leads to expressions for the probability of observing 
a value of the variance for some chosen value of the sam-
pling or averaging time. Expressions for the mean squared 
deviation of the mean of the variance itself are derived in 
Section VI. The approach is used to discuss the modified 
Allan variance in Section VII, and the non-overlapping 
form of the Allan variance is treated in Section VIII. Ap-
pendix A discusses evaluation of a contour integral for the 
probability, first introduced in Section IV, in the general 
case.

II. Discrete Time Series

We imagine the noise amplitudes at Fourier frequencies 
fm are generated by a set of N normally distributed ran-
dom complex numbers wn having mean zero and variance 
〈 〉w wm m

*  = 2σ 2, that would by themselves generate a simu-
lated spectrum for white phase noise. These random num-
bers are divided by a function of the frequency, | fm|λ, pro-
ducing a spectral density that has the desired frequency 
characteristics. For ordinary power-law noise, the expo-
nent λ is a multiple of 1/2, but it could be anything. The 
frequency noise is then transformed to the time domain, 
producing a time series with the statistical properties of 
the selected power law noise. The Allan variance, modified 
Allan variance, Hadamard variance, variances with dead 
time, and other quantities of interest can be calculated 
using either the frequency noise or the time series.

In the present paper, we discuss applications to calcula-
tion of various versions of the Allan variance. Of consider-
able interest are results for the probability of observing 
a value of the Allan variance for particular values of the 
sampling time τ and time series length N. The derivations 
in this paper are theoretical predictions. A natural fre-
quency cutoff occurs at fh = 1/(2τ0), where τ0 is the time 
between successive time deviations. This number is not 
necessarily related in an obvious way to some hardware 
bandwidth. The measurements are assumed to be made 
at the times kτ0, and the time errors or residuals relative 
to the reference clock are denoted by xk. The averaging or 
sampling time is denoted by τ = sτ0, where s is an integer. 
The total length of time of the entire measurement series 
is T = Nτ0. The possible frequencies that occur in the 
Fourier transform of the time residuals are

	 f
m
N

N
m

N
m = 2 1 2 .

0τ
, − + ≤ ≤ 	 (3)

In order that a set of noise amplitudes in the frequency 
domain represent a real series in the time domain, the 
amplitudes must satisfy the reality condition

	 w wm m−
∗= ( ) .	 (4)

N random numbers are placed in N/2 real and N/2 imagi-
nary parts of the positive and negative frequency spec-
trum. Thus, if wm = um + ivm, where um and vm are 
independent uncorrelated random numbers, then (wm)* 
= um − ivm. Because the frequencies ±1/2τ0 represent es-
sentially the same contribution, vN/2 will not appear. We 
shall assume the variance of the noise amplitudes is such 
that

	 〈 〉 〈 〉+ ≠( ) = = 2 ; 0, 2.* 2 2 2w w u v m Nm n mn mnδ σ δ / 	 (5)

Also, 〈 〉wm2  = 〈u2 − v2 + 2iuv〉 = 0 for m ≠ N/2. The index 
m runs from −N/2 + 1 to N/2. To avoid division by zero, 
we shall always assume that the Fourier amplitude corre-
sponding to zero frequency vanishes. This only means that 
the average of the time residuals in the time series will be 
zero, and has no effect on any variance that involves time 
differences.

We perform a discrete Fourier transform of the frequen-
cy noise and obtain the amplitude of the kth member of 
the time series for white PM:

	 x
N

e wk
m N

N
imk N

m= .0
2

= 2 1

2
2τ π

− +

−∑
/

/
/( ) 	 (6)

The factor τ0
2 is inserted so that the time series will have 

the physical dimensions of time if wm has the dimensions 
of frequency. We then multiply each frequency component 
by | f0/fm|λ. This will generate the desired power-law form 
of the spectral density. The time series will be represented 
by

	 X
N

f
f
e wk

m N

N

m

imk N
m= .0

2

= 2 1

2
0 2τ λ

λ
π

− +

−∑
/

/
/( ) 	 (7)

The constant factor | f0|λ has been inserted to maintain 
the physical units of the time series. The parameter f0 de-
termines the level hα of the noise. For this to correspond 
to commonly used expressions for the one-sided spectral 
density, (2), we shall assume that

	
τ

π σ τ

λ
α0

2
0

2 2
0

=
16 ( )

;
f
N

h
N

	 (8)

we then may show that if 2λ = 2 − α, the correct average 
spectral density is obtained. The simulated time series is

	 X
h
N

e
f
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m

imk N

m
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16 ( )
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π

λπ σ τ ∑
−( )/

	 (9)
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The average (two-sided) spectral density of the time re-
siduals is obtained by squaring a single term in (9) and 
dividing by the spacing Δf = 1/(Nτ0) between successive 
allowed frequencies:

	 s f
h
N f

w w
f

h
fx m

m

m m

m
( ) =

16 ( )
=

82 2
0

2

*

2 2
α

λ
α
λπ σ τ π∆
.	 (10)

The average (two-sided) spectral density of fractional fre-
quency fluctuations is given by the well-known relation 
[8], [9]

	 s f f s fy x( ) = (2 ) ( ),2π 	 (11)

and in agreement with convention, (2), the one-sided spec-
tral density is

	 S f f s f h f fy y( ) = 0, < 0; 2 ( ) = , > 0,α
α 	 (12)

where 2λ = 2 − α.

III. Overlapping Allan Variance

Consider the second-difference operator defined by

	 ∆ j s j s j s jX X X,
(2)

2 2=
1
2

( 2 ).
τ

+ +− + 	 (13)

The fully overlapping Allan variance is formed by averag-
ing the square of this quantity over all possible values of j 
from 1 to N − 2s. Thus,

	 σ τy
j

N s

j sN s
2

=1

2

,
(2) 2( ) =

1
2 ( ) .

−

−

∑ ∆ 	 (14)

In terms of the time series, (9), the second difference can 
be reduced using elementary trigonometric identities:
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		  (15)

We form the averaged square of ∆ j s,
(2) by multiplying (15) 

by its complex conjugate, then summing over all possible 
values of j and averaging:
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The average of the product of random variables only con-
tributes 2σ 2 when m = n [see (5), except when m = n = 
N/2, where 〈 〉wN/2

2  = σ 2]. The Allan variance reduces to
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because every term in the sum over j contributes the same 
amount. The zero-frequency term is excluded from the 
sum. For convenience, we introduce the abbreviation

	 K
h
N

=
2
( )

.2 2
0

α

π τ τ
	 (18)

If we write the sum in terms of positive frequencies only, a 
factor of 2 comes in except for the most positive frequency, 
and so
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.	 (19)

The influence of the second term in (19) is very small ex-
cept when s is very small; we shall therefore neglect it in 
the remainder of this paper. If the frequencies are spaced 
densely enough to pass from the sum to an integral, then 
Δf = (Nτ0)−1 and

	
1

( ) ( )
0N F f F f f
m

mτ ∑ ∫→ d ,	 (20)

and we obtain the standard result [12]

	 σ τ
π τ

π τy
f yh S f f

f
f2

0 2 2 2
4( ) = 2

( )
( ( )) .∫

d
sin 	 (21)

Similar arguments lead to known expressions for the non-
overlapping version of the Allan variance, the modified Al-
lan variance, and the Hadamard variance; proofs of these 
statements can be given provided no windowing or under-
sampling is applied to the time series. These variances will 
be discussed in later sections.

IV. Eigenvalues and Probabilities

In this section, we shall develop expressions for the 
probability of observing a particular value Ao for the over-
lapping Allan variance in a single measurement, or in a 
single simulation run. Ao is a random variable represent-
ing a possible value of the overlapping variance. We use 
a subscript o to denote the completely overlapping case. 
To save writing, we introduce the following abbreviations:
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The dependence on s is suppressed, but is to be under-
stood. We write the second difference in terms of a sum 
over positive frequencies only, keeping in mind that the 
most positive and the most negative frequencies only 
contribute a single term because sin(π ( j + s)) = 0. The 
imaginary contributions cancel, and from (15) we obtain

	 ∆ j s
m

m
j m

m
j mK F

u
G
v

,
(2)

>0

= .− +( )∑ σ σ 	 (23)

There is no term in vN/2. Then, from (17), the overlapping 
Allan variance is given by

	 σ τy
j m

m
j

m
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+∑∑ 	 (24)

To compute the probability that a particular value Ao 
is observed for the Allan variance, given all the possible 
values that the random variables u1, v1, …, uN/2 can have, 
we form the integral
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The Dirac delta function constrains the averaged second 
difference to the specific value Ao and the normally dis-
tributed random variables u1, v1, …, um, vm, …, uN/2 range 
over their values. There is no integral for vN/2. Inspecting 
this probability and (23) for the second difference indi-
cates that we could dispense with the factors of σ −1 and 
work with normally distributed random variables having 
variance unity. Henceforth, we set σ = 1.

The exponent involving the random variables is a qua-
dratic form that can be written in matrix form by intro-
ducing the N − 1 dimension column vector U (the zero-
frequency component is excluded)

	 U u v u v v um m N N
T = [ , ,... , , ... , ].1 1 /2 1 /2− 	 (26)

Then
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where 1 represents the unit matrix. The delta-function in 
(25) can be written in exponential form by introducing 

one of its well-known representations, an integral over all 
angular frequencies ω [10]:
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The contour of integration goes along the real axis in the 
complex ω plane.

The squared second difference is a complicated quadrat-
ic form in the random variables u1, v1, …, um, vm, …, uN/2. 
If this quadratic form could be diagonalized without ma-
terially changing the other quadratic terms in the expo-
nent, then the integrals could be performed in spite of the 
imaginary factor i in the exponent. To accomplish this, we 
introduce a column vector C j that depends on j, m, s, N 
and whose transpose is

	 ( ) = [ , , , , , ].1 1 2 1 2C F G F G G Fj j j
m
j

m
j

N
j

N
jT

/ /… … −, , 	 (29)

Dependence on s is not written explicitly but is under-
stood. The column vector has N − 1 real components. It 
contains all the dependence of the second difference on 
frequency, averaging time τ, and on the particular power 
law noise. We use indices {m, n} as matrix (frequency) in-
dices. The (scalar) second difference operator in (23) can 
be written very compactly as a matrix product

	 ∆ j s
j jK C U KU C,

(2) = ( ) = .− −T T 	 (30)

Then, the quantity in (14) to be averaged is
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The matrix

	 H
K

N s C C
j

j j
o

T= 2 ( )
− ∑ 	 (32)

is real and symmetric. Ho is also Hermitian and there-
fore has real eigenvalues. A real symmetric matrix can be 
diagonalized by an orthogonal transformation [11], [12], 
which we denote by O. Although we shall not need to de-
termine this orthogonal transformation explicitly, it could 
be found by first finding the eigenvalues ε and eigenvec-
tors ψε of Ho, by solving the equation

	 H oψ εψε ε= .	 (33)

The transformation O is a matrix of dimension (N − 1) × 
(N − 1) consisting of the components of the normalized 
eigenvectors placed in columns. Then

	 H O OEo = ,	 (34)
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where E is a diagonal matrix with entries equal to the 
eigenvalues of the matrix Ho. Then, because the transpose 
of an orthogonal matrix is the inverse of the matrix,

	 O H O ET
o = .	 (35)

The matrix Ho is thus diagonalized, at the cost of intro-
ducing a linear transformation of the random variables:
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We introduce N − 1 new random variables by means of 
the transformation

	 V O U= .T 	 (37)

Then, the term in the exponent representing the Gaussian 
distributions is
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The Gaussian distributions remain basically unchanged.
Further, the determinant of an orthogonal matrix is 

±1, because the transpose of the matrix is also the inverse:

	 det det det( ) = 1 = ( ) = ( ( )) .1 2O O O O O− T 	 (39)

Therefore, changes in the volume element are simple be-
cause the volume element for the new variables is
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After completing the diagonalization,

	
1

2 ( ) = .,
(2) 2 2

N s V
j

j s
i
i i− ∑ ∑∆ ε 	 (41)

The probability is therefore
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An eigenvalue of zero will not contribute in any way to 
this probability because the random variable correspond-
ing to a zero eigenvalue just integrates out.

Let the eigenvalue εi have multiplicity μi, which means 
that the eigenvalue εi is repeated μi times. Integration 

over the random variables then gives a useful form for the 
probability:
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Finally, the contour integral may be deformed and closed 
in the upper half complex plane, where it encloses the 
singularities of the integrand. This is discussed in Appen-
dix A. If Ao < 0 the contour may be closed in the lower 
half-plane where there are no singularities, so in this case 
P(Ao < 0) = 0. Knowing the probability, one may inte-
grate with respect to the variance Ao to find a cumulative 
distribution:

	 Φ( ) = ( ) .0
0

0
A P A A

A

∫ d 	 (44)

The cumulative distribution determines the values of Ao 
corresponding to a specified confidence limits; for exam-
ple, the median of Ao occurs when Φ(Ao) = 0.5; values of 
Ao occur with probability 0.5 when Φ(Ao) is within the 
limits Φ(Ao) = 0.5 ± 0.25.

A. Properties of the Eigenvalues

First, it is easily checked that the probability is cor-
rectly normalized by integrating over all Ao and using 
properties of the delta function:
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Second, the eigenvalues are all either positive or zero. The 
eigenvalue equation for the eigenvector labeled by ε is
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Multiply on the left by ψε
T; assuming the vector has been 

normalized, we obtain

	 ε ψε= 2 (( ) ) 0.2K
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j
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Thus, every eigenvalue must be positive or zero.
Next, let us calculate the trace of Ho. Because the trace 

is not changed by an orthogonal transformation,
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The sum of the diagonal elements of Ho equals the sum 
of the eigenvalues of Ho. If we then explicitly evaluate the 
sum of the diagonal elements of Ho, we find from (48) and 
(22)
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Every term labeled by j contributes the same amount. We 
obtain the useful result that the overlapping Allan variance 
is equal to the sum of the eigenvalues of the matrix Ho. 
Similar results can be established for many of the other 
types of variances. (See Section VIII.)

B. Distribution of Eigenvalues

The equation for eigenvalues Hoψμ = εψμ produces 
many zero eigenvalues, especially when τ is large. The 
dimension of the matrix Ho is therefore much larger than 
necessary. We have performed extensive numerical calcu-
lations for many different values of N, which indicate that 
for the completely overlapping Allan variance, the eigen-
value equation has a total of N − 1 eigenvalues, but only 
N − 2s nonzero eigenvalues; the number of significant ei-
genvalues is, in fact, equal to the number of terms N − 2s 
in the sum over j in the equations:
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N s

m
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j
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2 ( ) ( ) = .
2

ψ εψ 	 (50)

The factorized form of Ho, which arises on squaring the 
difference operator in (32), permits the reduction of the 
size of the matrix that is to be diagonalized. We introduce 
the quantities

	 φ ψµ µ
j

n
n
j
nC= ( ) .∑ 	 (51)

We use the Greek index μ to label a nonzero eigenvalue 
and the index ν to label a zero eigenvalue. The eigenvalue 
equation becomes
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m− ∑2 ( ) = .φ εψµ µ 	 (52)

Multiply by (Cm)l and sum over the frequency index m. 
Then,

	
K

N s C C
m j

m
l
m
j j l

− ∑2 ( ) ( ) = .
,

φ εφµ µ 	 (53)

This is an eigenvalue equation with reduced dimension N 
− 2s rather than N − 1, because the number of possible 
values of j is N − 2s. The eigenvalue equation can there-
fore be written in terms of a reduced matrix Hred, given by

	 ( ) = 2 ( ) ( ) .H
K

N s C Clj

m
m
l
m
j

red − ∑ 	 (54)

The indices l,j run from 1 to N − 2s. Eigenvalues gener-
ated by (53) are all nonzero. To prove this, multiply (53) 
by φµ

l  and sum over l. We obtain
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N s C
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m
l l
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l
− ( )∑ ∑ ∑2 ( ) = ( ) .

2 2φ ε φµ µ 	 (55)

The eigenvalue cannot be zero unless

	
l

m
l lC∑( ) = 0φµ 	 (56)

for every m. The number of such conditions however is 
larger than the number N − 2s of variables, so the only 
way this can be satisfied is if φµ

l  = 0, a trivial solution. 
Therefore, to obtain normalizable eigenvectors from (53), 
the corresponding eigenvalues must all be positive. This is 
true even though some of these conditions may be trivi-
ally satisfied if the factor sin(πms/N) vanishes, which 
happens sometimes when

	 ms MN= ,	 (57)

where M is an integer. Every time a solution of (57) oc-
curs, two equations relating components of φµ

l  are lost. 
Suppose there were n solutions to (57); then the number 
of conditions lost would be 2n. The number of variables is 
N − 2s and the number of conditions left in (56) would be 
N − 1 − 2n. The excess of conditions over variables is thus

	 N n N s s n− − − − − −1 2 ( 2 ) = 2( ) 1.	 (58)

In Appendix B, we prove that under all circumstances 
2(s − n) − 1 > 0.

We temporarily drop the subscript o because the re-
mainder of the results in this section are valid for any of 
the variances. If the eigenvalues are found and the appro-
priate matrix is diagonalized, we may compute the prob-
ability for observing a value of the variance, denoted by 
the random variable A, by
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C. Case of a Single Eigenvalue

If a single eigenvalue occurs once only, the general 
probability expression, (59), has a single factor in the de-
nominator:
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The integral is performed by closing the contour in the up-
per half complex ω plane. There is a branch point on the 
imaginary axis at ω = i/(2ε), and a branch line from that 
point to infinity. Evaluation of the integral gives
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This is a chi-squared distribution with exactly one degree 
of freedom. The computation of the confidence interval 
for a given τ = τ0s is simple. The cumulative probability 
obtained from (61) is
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The ±25% limits on the probability of observing a value 
A are then found to be 1.323 2σy  and 0.1015 2σy, respectively. 
An example of this is plotted in Fig. 1. (A is a variance, 
not a deviation.)

D. Case of Two Distinct Nonzero Eigenvalues

For the overlapping variance, when s has its maximum 
value N/2 − 1 there are two unequal eigenvalues. The 
probability integral can be performed by closing the con-
tour in the upper half plane, and gives the expression
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where I0 is the modified Bessel function of order zero [13], 
[14]. The probability is correctly normalized. It differs 
from a chi-squared distribution in that the density does 
not have a singularity at A = 0. This is illustrated in Fig. 
2.

Evaluation of the contour integral when there are more 
than two distinct eigenvalues is discussed in Appendix A. 
If an eigenvalue occurs an even number 2n times, the cor-
responding singularity becomes a pole of order n and a 
chi-squared probability distribution may result; this has 
only been observed to occur for white PM.

V. Confidence Estimates

One of the goals of this investigation is to estimate the 
uncertainty in the variance when some value of the vari-
ance is measured. This can be rigorously defined if the 
probability P(Ao) is available, but it may be difficult to 
evaluate the integral in (43). In this case, one might be 

Fig. 1. Comparisons of average non-overlapping Allan variance (light 
line) with rms deviations from the mean of the variance (heavy lines) 
and true ±25% limits (medium heavy lines) for N = 1024 data items 
in the time series for white fm. Results for the Allan variance for two 
independent simulation runs are plotted for comparison.

Fig. 2. Simulation of non-overlapping Allan variance for flicker fm with 
N = 64, s = 19. For this case, there are two distinct eigenvalues in 
the matrix for the non-overlapping case. The variance for s = 19 was 
extracted from each of 4000 independent runs and a histogram of the 
values obtained was constructed for comparison with the probability, 
(63). Chi-squared distributions with 1, 2, and 3 degrees of freedom are 
plotted for comparison.
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interested in a measure such as the rms value of the vari-
ance, measured with respect to the mean variance σ τy

2( ). 
One method for obtaining this measure is obtained from 
the probability without introducing a Fourier integral rep-
resentation for the delta function:
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Expanding the square in the integrand, there are N fourth-
order terms and N(N − 1) cross terms, so we get
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To obtain the variance of the variance, we must subtract

	 〈 〉 +∑ ∑
≠

A
i
i

i j
i jo

2 2= 2 .ε ε ε 	 (66)

The result is
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Therefore, the rms deviation of the variance from the 
mean variance is equal to 2 times the square root of the 
sum of the squared eigenvalues. This result is not very 
useful if there are only a small number of eigenvalues, 
because the factor 2 can make the rms deviation from 
the mean of the variance larger than the variance. This is 
because the probability distribution of the variance is not 
a normal distribution, and can lead to unreasonably large 
estimates of confidence intervals. An example is plotted in 
Fig. 1.

If the eigenvalues or the probabilities are not readily 
available, a similar confidence estimate can be obtained 
from an alternative form of (67) by considering the trace 
of the square of Ho:
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To prove this, consider diagonalization of Ho by the or-
thogonal transformation O, and compute
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If there are not too many terms in the sums over i and j 
then the sum over the frequency index in (68) can be use-
fully written as
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		  (70)

This leads to some useful approximation schemes, but 
these will not be discussed further in this paper.

Usually the variance of the variance is larger than the 
range of possible values of the variance computed from the 
±25% limits obtained from calculated probabilities. An 
example is given in Fig. 1, where the confidence intervals 
are plotted for the non-overlapping variance for N = 1024. 
In Fig. 1, h0 = 1 and τ0 = 1. For s ranging between 342 
and 511 there is only one eigenvalue, so the rms deviation 
of the variance from the variance is 2 times the variance. 
This gives an upper limit on the confidence interval that 
is 1.414 times the variance, larger than that obtained from 
the actual probability distribution. The medium heavy 
lines in Fig. 1 show the true ±25% probability limits ob-
tained from calculations such as in (107) in Appendix A.

VI. Modified Allan Variance

The modified Allan variance is defined so that averages 
over time are performed before squaring and averaging. 
We use a subscript m to distinguish this form from the 
overlapping form of the variance. The definition is
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Summing the expression for the second-difference given 
in (15),
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Squaring this, we write the complex conjugate of one fac-
tor and obtain the ensemble average
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Using (5) and writing the result in terms of a sum over 
positive frequencies only,
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Passing to an integral when the frequency spacing is suf-
ficiently small,
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This agrees with previously derived expressions [15]. The 
appearance of the sine function in the denominator of this 
expression makes the explicit evaluation of the integral 
difficult. In Table I, we give the leading contributions to 
the modified Allan variance for very large values of the av-
eraging time τ. In general there are additional oscillatory 
contributions with small amplitudes that are customarily 
neglected. These results do not agree, however, with those 
published in [16]; the leading terms do agree with those 
published in [17].

For the modified case, instead of (32), there are two 
summations; we use a subscript m on H to denote the 
modified form:

	 H
K
s

C C
j

j

k

k
m

T= ( ) .2∑ ∑ 	 (76)

We then seek solutions of the eigenvalue equation
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Multiply by l
lC∑( )T and sum over the frequency index.
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The matrix equation has been reduced to a scalar equa-
tion for the quantity

	 φ ψε= ( ) .
k

kC∑ T 	 (79)

Here, the matrix product of (Ck)T with ψε entails a sum 
over all frequencies. Because we have a scalar eigenvalue 
equation for ε, there can be one and only one eigenvalue, 
which is easily seen to be the same as given by (74) for 
each sampling time τ :
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The probability distribution will be of the form of (61), a 
chi-squared distribution with one degree of freedom.

VII. Non-Overlapping Allan Variance

In the non-overlapping form of the Allan variance, the 
only change with respect to (14) is that the sum over j 
goes from 1 in steps of s up to jmax ≤ N − 2s. We denote 
the number of values of j by nmax. The average non-over-
lapping variance is the same as that for the overlapping 
case, but the probability distributions are different. The 
matrix Hno takes the form
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The subscript no labels a non-overlapping variance, and 
the indices m and n label frequencies. Here, there are only 
nmax terms in the sum because the values of j skip by s. 
nmax is given by

TABLE I. Asymptotic Expressions for the Modified Allan Variance,  
in the Limit of Large Sampling Times τ = sτ0. 

Noise type Sy( f ) Mod σ τy
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where Q  denotes the largest integer less than or equal to 
Q. To diagonalize Hno and compute probabilities, we look 
for eigenvalues by seeking solutions of
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We define a reduced eigenvector by
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The eigenvalue equation reduces to
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Multiply this equation by (Cm)l and sum over the fre-
quency labels m. Then
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the sum over frequencies is accomplished by the matrix 
multiplication. Just as for the overlapping case, if we cal-
culate the trace of the matrix Jlj, we find that because 
each term in the sum over j contributes the same amount,
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Because the trace remains unchanged under an orthogonal 
transformation, the non-overlapping Allan variance will 
be equal to the sum of the eigenvalues of (86). The prob-
ability functions for a given τ can differ from those for 
the overlapping or modified cases because the number of 
eigenvalues and their multiplicities may be different. The 
eigenvalues are still all greater than or equal to zero.

If the eigenvalues are found and the matrix Jlj is diago-
nalized, we may compute the probability for observing a 
value of the overlapping variance, denoted by the random 
variable Ano, by
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For example, when there are only two distinct nonzero 
eigenvalues, the matrix Jlk will have elements
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The eigenvalues are then
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The probability is of the form of (63).
Fig. 2 shows an example of this for flicker FM noise, for 

N = 64 items in the time series. The variance correspond-
ing to τ = 19τ0 was extracted from each of 4000 inde-
pendent simulation runs and a histogram of the resulting 
values was plotted. Good agreement with the predicted 
probability distribution can be seen.

VIII. Other Variances

The analysis methods developed in this paper can be 
extended to other variances. For example, the Theo vari-
ance [18] is defined by an overlapping average,
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where s is assumed to be even, and τ = 3sτ0/4. For any of 
the power law noises, and after passing to an integral, this 
expression can be transformed with the aid of elementary 
trigonometric identities to
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The integer κ in the denominator makes this variance 
more difficult to evaluate, but a factorized quadratic form 
can still be constructed and the eigenvalue structure and 
resulting probabilities can be analyzed.

The Hadamard variance is defined in terms of a third 
difference, and is widely used to characterize clock stabil-
ity when clock drift is a significant issue [19], [20]. A third 
difference operator may be defined as
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The completely overlapping Hadamard variance is the av-
erage of the square of this third difference:
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These methods can be applied to cases in which there 
is dead time between measurements of average frequency 
during the sampling intervals. Suppose, for example, that 
the measurements consist of intervals of length τ = sτ0 
during which an average frequency is measured, separated 
by dead time intervals of length D − τ during which no 
measurements are available. Let the index j label the mea-
surement intervals with j = 1, 2, …, N. A variance can be 
defined in terms of the difference between the average fre-
quency in the jth interval and that in the interval labeled 
by j + r:
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where y j s,  is the average frequency in the interval j of 
length sτ0. Then, an appropriate variance can be de-
fined as
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If the measurements are sufficiently densely spaced that 
it is possible to pass to an integral, this can be shown to 
reduce to
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When D = τ and r = 1 there is no real dead time and this 
variance reduces to the ordinary Allan variance.

IX. Summary and Conclusion

In this paper, a method of simulating time series for the 
common power-law noises has been developed and applied 
to several variances used to characterize clock stability. 
These include overlapping and non-overlapping forms of 
the Allan variance, and the modified Allan variance. It 
was shown that diagonalization of quadratic forms for the 
average variances leads to expressions for the probabilities 
of observing particular values of the variance for a given 
sampling time τ = sτ0. The probabilities are expressed in 
terms of integrals depending on the eigenvalues of ma-
trices formed from squares of the second differences that 
are used to define the variance. The eigenvalues are usu-
ally distinct; only for white PM have eigenvalues been 

observed (after much calculation) to occur with multi-
plicities other than unity; we do not have a proof of this. 
Generally speaking, the number of eigenvalues is equal to 
the number of terms occurring in the sum used to define 
averages of the second-difference operator. The probabil-
ity distribution P(A) for some variance A is useful in es-
timating the ±25% confidence interval about the average 
variance. The number of eigenvalues gets smaller as the 
sampling time τ gets larger.

It is well-known that a chi-squared distribution with n 
degrees of freedom occurs for a variable that is the sum 
of squares of n normally distributed random variables. It 
has been shown that, with this method, probabilities for 
the Allan variance, using the present simulation method, 
are not always—in fact are rarely—chi-squared distribu-
tions. This is because the frequency dependence, inserted 
to make the time series obey the chosen noise power law, 
disrupts the distribution of eigenvalues in most cases. 
Other methods of simulating power law noise have been 
published; the present approach differs from that of [2]. 
The present approach respects all the standard expres-
sions for spectral density and the relationships between 
Allan variance and spectral density for the common pow-
er-law noises. It also yields reasonable simulation results 
for power-law noises that diverge more rapidly than flicker 
noise at low frequencies.

Application of these methods to simulation of phase 
noise will be discussed in a future paper.

Appendix A 
Evaluation of Contour Integrals  

for Probability

In almost all cases except for white PM, the eigenvalues 
are all distinct. We show here how then the probability 
function, (43), can be reduced to a sum of real integrals. 
For each of the eigenvalues, we introduce the quantity

	 rk k= 1 (2 )./ ε 	 (99)

The integral becomes

	 P A
r
e

e
irk

k
i

i A

k
k

( ) = 2 ( )
.4 1 2∏ ∫( )







 −∏π

ωω
π ω/ /

d
	 (100)

Because A > 0, by Jordan’s lemma [17], the contour of 
integration can be deformed into the upper half-plane. 
The addition of circular arcs at radius |ω | = ∞ contrib-
utes nothing. Each of the square root factors in (100) has 
a branch point at ω = irk with a branch line extending 
to +i∞ along the imaginary axis. We define the complex 
argument of each such factor by

	 − −
3
2 < ( ) < 2.
π

ω
π

arg irk 	 (101)
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All branch lines extend along the positive y-axis to in-
finity. The largest eigenvalues give singularities closest to 
the real axis. Fig. 3 illustrates the resulting contour. 
Around each branch point is a circular portion which con-
tributes nothing because as the radius δ of each circle ap-
proaches zero, the contribution to the integral approaches 
zero as δ. The integral then consists of straight segments 
where ω = iy ± δ, where δ approaches zero. Two such 
straight segments are illustrated in Fig. 3, one on each side 
of the branch line along the y-axis. Suppose the interval of 
interest is placed so that out of a total of M eigenvalues, n 
of them are below the interval (three are shown in the 
figure). For the contribution to the integral on the left, y 
is decreasing, and we can account for this by reversing the 
limits and introducing a minus sign. The phase factor con-
tributed by n factors with branch points below the inter-
val is

	
1

( )
= ( ) .3 4

3 4

e
ei n

i n
−( )

( )
π

π
/

/ 	 (102)

The contribution from branch points above the interval 
of interest is the same on both sides of the y-axis, and is

	 ( ) .4e i M n( )π / − 	 (103)

The factor in front of the integral sign in (100) is the same 
on both sides of the y-axis and is

	 ( ) .4e i M−( )π / 	 (104)

The total phase factor of this contribution, including a 
factor i that comes from setting ω = iy is thus

	 − −− −i e e e i ei M i M n i n i n( ) ( ) ( ) = ( ) .4 4 3 4 2( ) ( ) ( ) ( )π π π π/ / / / 	 (105)

For the integral along the segment on the positive side of 
the y-axis, the only difference is that the phase of each of 
the n contributions from branch points below the interval 
changes from 3π/4 to −π/4. The phase factor for this part 
of the contour is thus

	 + +− − − −i e e e i ei M i M n i n i n( ) ( ) ( ) = ( ) .4 4 4 2( ) ( ) ( ) ( )π π π π/ / / / 	 (106)

If n is even, the two contributions cancel. If n = 2m + 
1 is odd, then the contributions add up with a factor  
2(−1)m. The probability is thus always real and consists 
of contributions with alternating signs, with every other 
interval left out.

In summary, the contour integral contributions from 
portions of the imaginary axis in the complex ω plane that 
have an even number of branch points below the interval 
will not contribute to the integral. For example, if there 
are four distinct eigenvalues, the probability will reduce to
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		  (107)

Such results have been used to evaluate the probabilities 
for certain sampling intervals for flicker fm noise in Sec-
tion IV.

Appendix B 
Proof That (53) Generates Positive Eigenvalues

In this Appendix, we show that (57) gives rise to posi-
tive eigenvalues under all circumstances.

Obviously, if N is a prime number, (57) can never be 
satisfied (n = 0). Consider the case s = N − 1. Then, m 
= MN and there are no solutions because m ≤ N/2. In 
general, both m and s may contain factors that divide M 
or N. Suppose s = ab where at least one of the factors 
a, b is greater than 1, where a divides M and b divides N. 
Then let

	 M am N bna b= , = .	 (108)

Then, m = manb. m = manb > N/2 = bnb/2 cannot hap-
pen because m ≤ N/2. If manb = N/2 = bnb, then the 
number of solutions is n = 1 and 2(s − n) − 1 = 2(ab − 
1) − 1 ≥ 2(2 − 1) − 1 > 0. If m = manb < N/2 = bnb/2, 
then there may be solutions m = manb, m = 2manb, m = 
3manb, …, up to bnb/2. The number of such solutions is

Fig. 3. Contour deformed to run along branch line on the y-axis. A pair 
of segments is shown with an odd number of singularities below the seg-
ments. The branch line required by square root factors of the form 
ω − rk  is defined by the angles—either π/2 or −3π/2—of the segments 

relative to the Re(ω) axis. Contributions from pairs of segments that are 
above an even number of branch points cancel out.
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where x  means the largest integer less than or equal to x. 
The excess of conditions is then

	 2( ) 1 = 2 > 1,s n ab
b
ma

− − −




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which proves the assertion.
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