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Simulations of the Hadamard Variance: Probability
Distributions and Confidence Intervals

Neil Ashby and Bijunath Patla

Abstract—Power-law noise in clocks and oscillators can be sim-
ulated by Fourier transforming a modified spectrum of white
phase noise. This approach has been applied successfully to sim-
ulation of the Allan variance and the modified Allan variance in
both overlapping and nonoverlapping forms. When significant fre-
quency drift is present in an oscillator, at large sampling times
the Allan variance overestimates the intrinsic noise, while the
Hadamard variance is insensitive to frequency drift. The simula-
tion method is extended in this paper to predict the Hadamard
variance for the common types of power-law noise. Symmetric
real matrices are introduced whose traces—the sums of their
eigenvalues—are equal to the Hadamard variances, in overlap-
ping or nonoverlapping forms, as well as for the corresponding
forms of the modified Hadamard variance. We show that the stan-
dard relations between spectral densities and Hadamard variance
are obtained with this method. The matrix eigenvalues determine
probability distributions for observing a variance at an arbi-
trary value of the sampling interval τ , and hence for estimating
confidence in the measurements.

Index Terms—Analysis of variance, digital simulation, time
series analysis.

I. INTRODUCTION

W HEN an oscillator’s frequency drifts, usually the long-
term behavior of the Allan variance is dominated by

the drift, and the oscillator stability is not well characterized by
the Allan variance [3]. We could approach this problem by esti-
mating and removing the drift from the measured time series,
but the estimation process may itself introduce uncertainties. If
the time series is only of the order of a day or so in length,
drift removal may not introduce intolerable uncertainties [4].
However, removing the drift from longer time series may also
remove very long-term random components that might result in
severe underestimation of the variance for large sampling times.
The Hadamard variance, which is defined (see below) in terms
of a third difference of values of the time measurements, is nat-
urally insensitive to drift and is commonly applied to clocks
such as those based on rubidium atomic frequency standards
(RAFS), which are known to suffer from unpredictable fre-
quency drift following launch but which have better stability
than cesium clocks [6], [24]. In this paper, we build on our pre-
vious work that delineates the simulation of power-law noises
for the Allan variance and the modified Allan variance [1], [2].
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Imperfections in performance of the clock under test are
studied by analyzing noise in the time deviation sequence
xk = tk − kτ0, or the fractional frequency difference during
the sampling interval τ = sτ0

Δ
(1)
k,s = (xk+s − xk)/(sτ0). (1)

The frequency spectrum of fractional frequency differences can
usually be adequately characterized by linear superposition of a
small set of types of power-law noise. The frequency spectrum
of the fractional frequency differences of a particular noise type
is given by a one-sided spectral density [5]

Sy(f) = hαf
α, f > 0 (2)

where the units of Sy(f) are Hz−1. For the common power-
law noise types, α varies in integral steps from +2 down to
−2 corresponding, respectively, to white phase modulation,
flicker phase modulation, white frequency modulation, flicker
frequency modulation, and random walk of frequency.

This paper is organized as follows. Section II summarizes the
basic simulation method, and Section III applies the method
to the overlapping Hadamard variance. Analytic expressions
for limiting values of overlapping Hadamard variances at large
sampling times are given in Section IV. The nonoverlapping
Hadamard variance is described in Section V, and the modified
overlapping case is presented in Section VI. Section VII shows
how diagonalization of the averaged squared second-difference
operator, applied to the simulated time series, leads to expres-
sions for the probability of observing a value of the variance
for some chosen value of the sampling or averaging time. The
approach is extended to discuss the modified nonoverlapping
Hadamard variance in Section VIII. Application to radar vari-
ance, as an example, is discussed in Section IX, followed by
summary and conclusion in Section X.

II. DISCRETE TIME SERIES

The noise amplitudes at Fourier frequencies fm may be rep-
resented by a set of N normally distributed random complex
numberswn having mean zero and variance< w∗

mwm >= 2σ2

that would by themselves generate a simulated spectrum for
white phase noise [1]

Xk =
τ20σ√
N

N/2∑
m=−N/2+1

|f0|λ
|fm|λ e

− 2πimk
N

(wm

σ

)
. (3)

The factor τ20 is introduced in (3) so that when the random
numbers wm are interpreted as frequencies, Xk has physical
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dimensions of time. The negative sign for the exponent in (3)
was chosen to simplify later equations. In (3), the discrete
frequencies are

fm =
m

Nτ0
, −N

2
+ 1 ≤ m ≤ N

2
(4)

with N being an even number. The frequency parameter f0
was also introduced to make the physical dimensions of (3)
consistent. It is a constant unrelated to (4). The product τ20 f

λ
0

determines the level hα of the noise. An alternative expression
involving a sum over positive frequencies only is

Xk =
2τ20√
N

N/2−1∑
m=1

|f0|λ
|fm|λ

(
cos

2πmk

N
um + sin

2πmj

N
vm

)

+
τ20√
N

|f0|λ
|fN/2|λ (−1)kuN/2. (5)

We shall assume that the variance of the noise amplitudes is
such that

〈(wm)∗wn〉 =
〈
u2 + v2

〉
δmn = 2σ2δmn; m �= 0, N/2.

(6)

wm = um + ivm where um and vm are indepen-
dent uncorrelated random numbers. Also, < w2

m >=<
u2 − v2 + 2iuv >= 0 form �= N/2. In order to avoid division
by zero, we shall always assume that the Fourier amplitude
corresponding to zero frequency vanishes. This only means
that the average of the time residuals in the time series will
be zero, and has no effect on any variance that involves time
differences.

To obtain the correct spectral density, we shall assume that
the constants introduced in (5) are related to the strength of the
power-law noise by

τ20 |f0|λ√
N

=

(
hα

16π2σ2Nτ0

)1/2

. (7)

It has been shown [1] that if 2λ = 2− α, the correct average
spectral density is obtained (e.g., white phase noise is generated
when λ = 0). The simulated time series is

Xk =

(
hα

16π2Nτ0

)1/2∑
m

e−
2πimk

N

|fm|1−α/2

(wm

σ

)
. (8)

III. OVERLAPPING HADAMARD VARIANCE

Consider the third-difference operator defined by

Δ
(3)
j,s =

1√
6τ2

(Xj+3s − 3Xj+2s + 3Xj+s −Xj) . (9)

The completely overlapping Hadamard variance is formed by
averaging the square of this third difference over all possible
values of j from 1 to N − 3s: Thus

σ2
Ho(τ) =

1

N − 3s

〈
N−3s∑
j=1

(
Δ

(3)
j,s

)2〉
. (10)

In terms of the time series (8), the third difference can be
reduced using elementary trigonometric identities

Δ
(3)
j,s =

(
hα

96τ2π2σ2Nτ0

)1/2∑
m

wm

|fm|λ e
−πim(2j+3s)

N

×
(
e−

3πims
N − 3e

−πims
N + 3e

πims
N − e

3πims
N

)

= i

(
2hα

3τ2π2σ2Nτ0

)1/2∑
m

wme
−πim(2j+3s)

N

|fm|λ

×
(
sin
(πms
N

))3
. (11)

We form the averaged square of Δ
(3)
j,s by multiplying the

expression (11) by its complex conjugate, then summing over
all possible values of j and averaging. After averaging, only
terms corresponding to the same frequencies in the two factors
contribute. the overlapping Hadamard variance is

σ2
Ho(τ) =

4hα
3Nτ0π2τ2

∑
m

(
sin
(πms
N

))6 1

|fm|2λ . (12)

The spacing between frequencies is 1/(Nτ0) = df ; in the limit
of large N , the sum over frequencies passes to an integral

σ2
Ho(τ) =

4hα
3π2τ2

∫ fh

−fh

df

|f |2λ (sin(πfτ))
6
. (13)

Writing this as a single-sided integral in terms of the spectral
density

σ2
Ho(τ) =

8

3π2τ2

∫ fh

0

Sy(f)df

f2
(sin(πfτ))

6
. (14)

Returning to the discussion of (12), for convenience, we
introduce the abbreviation

K =
8hα

3π2τ2Nτ0
. (15)

If we write the sum in terms of positive frequencies only, a
factor of 2 comes in except for the most positive frequency
and so

σ2
Ho(τ) = K

⎛
⎝N/2−1∑

m>0

(
sin
(
πms
N

))6
f2λm

+

(
sin πs

2

)6
2(fN/2)2λ

⎞
⎠ . (16)

The influence of the second term in (16) is very small except
when s << N ; we shall, therefore, neglect it in the remainder
of this paper.

Similar arguments lead to known expressions for the
nonoverlapping version of the Hadamard variance and the mod-
ified Hadamard variance. Proofs of these statements can be
given provided no windowing or undersampling is applied to
the time series. These forms of the variance will be discussed
in later sections.

IV. LIMIT OF LARGE SAMPLING TIMES

We evaluate the integral in (14) for each of the common
power-law noises in the limit of large sampling times τ . The
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TABLE I
ASYMPTOTIC EXPRESSIONS FOR THE HADAMARD AND MODIFIED

HADAMARD VARIANCES IN THE LIMIT OF LARGE SAMPLING

TIMES τ = sτ0

Fig. 1. Overlapping Hadamard variance for N = 1024, for flicker PM. h1 has
been set equal to unity and τ0 = 1. Several actual simulation runs are plotted;
the theoretical average is shown as a dashed line.

spectral density is Sy(f) = hαf
α. Contributions to the inte-

grals typically have oscillating terms that become small in
this limit. Table I lists the limiting values of the overlapping
Hadamard variance with such oscillating terms omitted. γ is
the Euler’s constant in σ2

Ho(τ) for α = 1.
As is the case for the overlapping Allan variance, the differ-

ence between white PM and flicker PM cannot be distinguished
by the dependence on τ . Fig. 1 plots the overlapping Hadamard
variance for flicker PM, N = 1024. Several simulation runs are
shown as well as the average variance for Sy(f) = h1f .

V. NONOVERLAPPING HADAMARD VARIANCE

In the completely overlapping form, the sum in (10) runs
from 1 toN − 3s; thus, some values of the time series would be
used more than once. In order to avoid this problem, a nonover-
lapping form is defined as in (10) but with the sum over j
skipping repeated data items. Consider the sum

1

s

j+s−1∑
l=j

(
Δ

(3)
l,s

)2
. (17)

The sum has s terms and uses each data item from j to j + 4s−
1 exactly once. This block of data is of length 4s. In general,
4s is incommensurable with N so there will exist some data
items that will not be included in such blocks. Let Mmax be the
maximum integer such that

(4Mmax + 1)s ≤ N. (18)

Then, if we define the nonoverlapping form of the Hadamard
variance as

σHno(τ)
2 =

1

(Mmax + 1)s2

〈
Mmax∑
M=0

(4M+1)s∑
l=1+4Ms

(
Δ

(3)
l,s

)2〉

(19)

we will have left out part of one block of data, but each item of
data in the sum will appear with equal weight in (19). Although
an estimate of the variance could be improved by incorporating
the partial block of data and appropriately modifying the nor-
malization constant, we shall develop the theory ignoring such
contributions because the ensemble average of each term in (19)
is independent of l.

Squaring the third difference in (11), we write one of the
factors as a complex conjugate and average over the random
numbers. Then, the only terms that contribute to the double sum
are those for equal frequencies, and

〈(
Δ

(3)
k,s

)2〉
=

8

6

hα
π2τ2Nτ0

∑
m>0

(
sin πms

N

)6
|fm|2λ . (20)

Thus, the average of both overlapping and nonoverlapping
forms of the Hadamard variance are the same, but as will be
shown the probability distributions and confidence intervals are
different.

VI. MODIFIED OVERLAPPING HADAMARD VARIANCE

The Hadamard variance suffers from the same difficulty as
does the Allan Variance—the variances for both white phase
noise and flicker PM are proportional to τ−2 for large τ ;
thus, the Hadamard variance cannot distinguish between white
PM and flicker PM. Allan solved this problem by invent-
ing the modified variance, which involves averaging s differ-
ences before squaring, then averaging the result. The modified
Hadamard variance is defined as [23]

Mod σ2
H(τ) =

〈⎛⎝1

s

j+s−1∑
l=j

Δ
(3)
j,s

⎞
⎠

2〉
(21)

where the average is taken over the ensemble of values of the
random number distributions and over all possible values of
j. For the overlapping form, using elementary trigonometric
identities the expression reduces to

Mod σ2
H =

64τ40σ
2

3τ2Ns2

∑
m

|f0|2λ
|fm|2λ

(
sin

πms

N

)6( sin πms
N

sin πm
N

)2

.

(22)



ASHBY AND PATLA: SIMULATIONS OF THE HADAMARD VARIANCE 639

In the limit of sufficiently densely spaced frequencies, the sum
passes to a single-sided integral

Mod σ2
H(τ) =

8

3

∫ fh

0

Sy(f)df

(πsτf)2
(sinπτf)8

(sinπτ0f)2
. (23)

In general, this integral is difficult to evaluate. In Table I, we
give the results in the limit

τ/τ0 → ∞. (24)

As is the case for the modified Allan variance, the modified
Hadamard variance distinguishes between white PM and flicker
PM.

In the nonoverlapping case, the desire is to use each data
item only once, but to average over s values of the third dif-
ference before squaring. The average over s values of the third
difference, from (11) is

1

s

j+s−1∑
l=j

Δ
(3)
l,s = i

√
K

12s2

j+s−1∑
l=j

∑
m

wm

|fm|λ

×
(
sin
(πms
N

))3
e−

πim
N (2l+3s). (25)

In this sum, each item in the time series occurs exactly once.
Therefore, as in the case of the nonoverlapping variance, the
modified Hadamard variance can be constructed in terms of
blocks of nonoverlapping data. Here, the sum over l is a
geometric series giving

1

s

j+s−1∑
l=j

Δ
(3)
k,s = i

√
K

12s2

∑
m

wm

|fm|λ

×
(
sin
(
πms
N

))4
sin(πmN )

e−
πim
N (2l+4s−1). (26)

Squaring and averaging, again writing one factor in terms of
a complex conjugate, as in the above cases only terms of equal
frequencies contribute and then summing only over positive fre-
quencies, the modified Hadamard variance is the same as that
given in (22), which can also be written

Mod σ2
H(τ) =

8K

3s2

∑
m>0

(
sin πms

N

)8
|fm|2λ (sin πm

N

)2 . (27)

In Section VII, we discuss the different probability functions
that arise.

VII. EIGENVALUES AND PROBABILITIES

In this section, we shall develop expressions for the prob-
ability of observing a particular value Ao for the overlapping
Hadamard variance in a single measurement, or in a single sim-
ulation run. Ao is a random variable representing a possible
value of the overlapping variance. We use a subscript “o” to
denote the completely overlapping case. To save writing, we
introduce the following abbreviations:

F j
m =

(
sin
(
πms
N

))3
|fm|λ sin

(
πm(2j + 3s)

N

)

Gj
m = −

(
sin
(
πms
N

))3
|fm|λ cos

(
πm(2j + 3s)

N

)
. (28)

The dependence on s is suppressed, but is to be understood.
We write the third difference in terms of a sum over positive
frequencies only, keeping in mind that the most positive and
the most negative frequencies only contribute a single term
since sin(π(j + s)) = 0. The imaginary contributions cancel,
and from (11) we obtain

Δ
(3)
j,s =

√
K
∑
m>0

(
F j
m

um
σ

+Gj
m

vm
σ

)
. (29)

There is no term in vN/2. Then from (10), the overlapping
Hadamard variance is given by

σ2
y(τ) =

K

N − 3s

N−3s∑
j=1

∑
m>0

(
(F j

m)2 + (Gj
m)2

)
. (30)

To compute the probability that a particular value, Ao is
observed for the Hadamard variance, given all the possible val-
ues that the random variables u1, v1, . . . , uN/2 can have, we
form the integral

P (Ao) =

∫
δ

⎛
⎝Ao − 1

N − 3s

∑
j

(
Δ

(3)
j,s

)2⎞⎠
×
∏
m>0

(
e−

u2
m+v2

m
2σ2

dumdvm
2πσ2

)
. (31)

The Dirac delta function constrains the averaged third differ-
ence to the specific valueAo while the normally distributed ran-
dom variables u1, v1, . . . , um, vm, . . . , uN/2 range over their
values. There is no integral for vN/2. Inspecting this proba-
bility and (29) for the third difference indicates that we could
dispense with the factors of σ−1 and work with normally dis-
tributed random variables having variance unity. Henceforth,
we set σ = 1.

The exponent involving the random variables is a quadratic
form that can be written in matrix form by introducing the N −
1 dimension column vector U (the zero frequency component
is excluded)

UT = [u1, v1, . . . , um, vm, . . . , vN/2−1, uN/2]. (32)

Then
1

2

∑
m>0

(u2m + v2m) =
1

2
UTU =

1

2
UT1U (33)

where 1 represents the unit matrix. The delta-function in (31)
can be written in exponential form by introducing one of
its well-known representations, an integral over all angular
frequencies ω [14]

P (Ao) =

∫ ∞

−∞

dω

2π
e
iω

(
Ao− 1

N−3s

∑
j

(
Δ

(3)
j,s

)2
)

×
∏
m>0

(
e−

u2
m+v2

m
2σ2

dumdvm
2πσ2

)
. (34)
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The contour of integration goes along the real axis in the
complex ω plane.

The squared third difference is a complicated quadratic form
in the random variables u1, v1, . . . , um, vm, . . . , uN/2. If this
quadratic form could be diagonalized without materially chang-
ing the other quadratic terms in the exponent, then the integrals
could be performed in spite of the imaginary factor i in the
exponent. To accomplish this, we introduce a column vector
Cj that depends on j,m, s,N and whose transpose is

(Cj)T = [F j
1 , G

j
1, . . . , F

j
m, G

j
m, . . . , G

j
N/2−1, F

j
N/2]. (35)

The column vector has N − 1 real components. It contains all
the dependence of the third difference on the frequency, aver-
aging time τ , and particular power-law noise. We use indices
{m,n} as matrix (frequency) indices. The (scalar) third differ-
ence operator in (29) can be written very compactly as a matrix
product

Δ
(3)
j,s =

√
K(Cj)TU =

√
KUTCj . (36)

Then, the quantity to be averaged is

1

N − 3s

∑
j

(
Δ

(3)
j,s

)2
= UT

⎛
⎝ K

N − 3s

∑
j

Cj(Cj)T

⎞
⎠U .

(37)

The matrix

Ho =
K

N − 3s

∑
j

Cj(Cj)T (38)

is real and symmetric. Ho is also Hermitian and therefore has
real eigenvalues. A real symmetric matrix can be diagonalized
by an orthogonal transformation [15], [16], which we denote
by O. Although we shall not need to determine this orthogo-
nal transformation explicitly, it could be found by first finding
the eigenvalues ε and eigenvectors ψε of Ho, by solving the
equation

Hoψε = εψε. (39)

The transformation O is a matrix of dimension (N − 1)×
(N − 1) consisting of the components of the normalized eigen-
vectors placed in columns. Then

HoO = OE (40)

where E is a diagonal matrix with entries equal to the eigenval-
ues of the matrixHo. Then, since the transpose of an orthogonal
matrix is the inverse of the matrix

OTHoO = E. (41)

The matrix Ho is thus diagonalized, at the cost of introducing a
linear transformation of the random variables

1

N − 3s

∑
j

(
Δ

(3)
j,s

)2
= UTHoU = UTOOTHoOO

TU

= (UTO)E(OTU). (42)

We introduce N − 1 new random variables by means of the
transformation

V = OTU . (43)

Then, the term in the exponent representing the Gaussian
distributions is

−1

2
UT1U = −1

2
UTO1OTU

= −1

2
V T1V = −1

2

N−1∑
n=1

V 2
n . (44)

The Gaussian distributions remain basically unchanged.
Furthermore, the determinant of an orthogonal matrix is ±1,

because the transpose of the matrix is also the inverse, and
the total volume element for the space of random numbers is
unchanged

dV1dV2, . . . , dVN−1 = dU1dU2, . . . , dUN−1. (45)

After completing the diagonalization

1

N − 3s

∑
j

(
Δ

(3)
j,s

)2
=
∑
i

εiV
2
i . (46)

The probability is, therefore,

P (Ao) =

∫
dω

2π
eiω(Ao−

∑
k εkV

2
k )
∏
i

(
e−

V 2
i
2
dVi√
2π

)
. (47)

An eigenvalue of zero will not contribute to this probability
since the random variable corresponding to a zero eigenvalue
just integrates out.

Let the eigenvalue εi have multiplicity μi, which means that
the eigenvalue εi is repeated μi times. Integration over the
random variables then gives a useful form for the probability

P (Ao) =

∫ +∞

−∞

dω

2π

eiωAo∏
k(1 + 2iεkω)μi/2

. (48)

Finally, the contour integral may be deformed and closed in
the upper half complex plane where it encloses the singularities
of the integrand. This is discussed in detail in [1] and will not
be repeated here. If Ao < 0 the contour may be closed in the
lower half plane where there are no singularities, so in this case
P (Ao < 0) = 0.

A. Properties of the Eigenvalues

First, it is easily checked that the probability is correctly
normalized by using properties of the delta-function∫

P (Ao)dAo =

∫ +∞

−∞

dω

2π

∫
eiωAodAo∏

i(1 + 2iεiω)μi/2

=

∫ +∞

−∞

δ(ω)dω∏
i(1 + 2iεiω)μi/2

=

∫ +∞

−∞
dωδ(ω) = 1. (49)
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Next, let us calculate the trace of Ho. Since the trace is not
changed by an orthogonal transformation

Trace(OTHoO) = Trace(HoOO
T ) = Trace(HoOO

−1)

= Trace(Ho) =
∑
i

εi. (50)

The sum of the diagonal elements of Ho equals the sum of the
eigenvalues of Ho. If we then explicitly evaluate the sum of the
diagonal elements of Ho, we find from (50) and (28)∑

i

εi =
K

N − 3s

∑
j

Trace
(
Cj(Cj)T

)

=
K

N − 3s

∑
j

∑
m>0

(
(F j

m)2 +
(
Gj

m

)2
)
)

= K
∑
m>0

(
sin πms

N

)6
|fm|2−α

= σ2
Ho(τ). (51)

Every term labeled by j contributes the same amount. We
obtain the useful result that the overlapping Hadamard vari-
ance is equal to the sum of the eigenvalues of the matrix Ho.
Similar results have been established for the various types of
the Allan variance [1].

B. Distribution of Eigenvalues

The equation for eigenvalues Hoψμ = εψμ produces many
zero eigenvalues, especially when τ is large. The dimension
of the matrix Ho is, therefore, much larger than necessary.
We have performed extensive numerical calculations for many
different values of N , which indicate that for the completely
overlapping Hadamard variance, the eigenvalue equation has a
total of N − 1 eigenvalues, but only N − 3s nonzero eigenval-
ues; the number of significant eigenvalues is in fact equal to the
number of terms N − 3s in the sum over j in the equations

K

N − 3s

∑
n

N−3s∑
j

(Cm)j(Cn)
jψn = εψm. (52)

The factorized form of Ho, which arises on squaring the differ-
ence operator in (38), permits the reduction of the size of the
matrix that is to be diagonalized. We introduce the quantities

φjμ =
∑
n

(Cn)
jψnμ. (53)

We use the Greek index μ to label a nonzero eigenvalue and
the index ν to label a zero eigenvalue. The eigenvalue equation
becomes

K

N − 3s

∑
j

(Cm)jφjμ = εψmμ. (54)

Multiply by (Cm)l and sum over the frequency index m. Then

K

N − 3s

∑
m,j

(Cm)l(Cm)jφjμ = εφlμ. (55)

This is an eigenvalue equation with reduced dimension N − 3s
rather than N − 1, since the number of possible values of j is
N − 3s. The eigenvalue equation can, therefore, be written in
terms of a reduced matrix Hred, given by

(Hred)
lj =

K

N − 3s

∑
m

(Cm)l(Cm)j . (56)

The indices l, j run from 1 to N − 3s. Eigenvalues generated
by (55) are all nonzero. To prove this, multiply (55) by φlμ and
sum over l. We obtain

K

N − 3s

∑
m

(∑
l

(Cm)lφlμ

)2

= ε
∑
l

(
φlμ
)2
. (57)

The eigenvalue cannot be zero unless∑
l

(Cm)lφlμ = 0 (58)

for every m. The number of such conditions, however, is larger
than the number N − 3s of variables, so the only way this
can be satisfied is if φlμ = 0, a trivial solution. Therefore to
obtain normalizable eigenvectors from (55), the correspond-
ing eigenvalues must all be positive. This is true even though
some of these conditions may be trivially satisfied if the factor
sin(πms/N) vanishes, which happens sometimes when

ms =MN (59)

where M is an integer. Every time a solution of (59) occurs,
two of (58) relating components of φlμ are lost. Suppose there
were n solutions to (59); then, the number of conditions lost
would be 2n. The number of variables is N − 3s and the num-
ber of conditions left in (58) would be N − 1− 2n. The excess
of conditions over variables is thus

N − 1− 2n− (N − 3s) = 3s− 2n− 1. (60)

It can be shown that under all circumstances 3s− 2n− 1 > 0;
thus, the eigenvalues obtained by solving (54) are all nonzero.

We temporarily drop the subscript o since the remainder of
this section is valid for any of the variances. If the eigenvalues
are found and the appropriate matrix is diagonalized, we may
compute the probability for observing a value of the variance,
denoted by the random variable A, by

P (A) =

∫ ∞

−∞

dω

2π
eiω(A−V TEV )

∏
i

(
e−V 2

i /2dVi√
2π

)

=

∫
dω

2π

eiωA∏
(1 + 2iεiω)μi/2

. (61)

C. Case of a Single Eigenvalue

If a single eigenvalue occurs once only, the general probabil-
ity expression (61) has a single factor in the denominator, and
evaluation of the integral gives

P (A) =
1√

2πσ2
Ho(τ)

e−A/(2σ2
Ho(τ))√
A

. (62)

This is a chi-squared distribution with exactly one degree of
freedom.
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D. Case of Two Distinct Nonzero Eigenvalues

For the overlapping variance, when s has its maximum value
N/3− 1 there are two unequal eigenvalues. The probability
integral can be performed by closing the contour in the upper
half plane and gives the expression

P (A) =
1

2
√
ε1ε2

e
−A

4

(
1
ε1

+ 1
ε2

)
I0

(
A

4

(
1

ε2
− 1

ε1

))
(63)

where I0 is the modified Bessel function of order zero [17],
[18]. The probability is correctly normalized. It differs from
a chi-squared distribution in that the density does not have a
singularity at A = 0.

E. Case of a Single Root ε Repeated Three Times

The probability integral can be evaluated by integrating by
parts, with the result

P (A) =
1√
2πε3

Ae−A/2ε. (64)

Evaluation of the contour integral when there are more than
two distinct eigenvalues is discussed in [1]. If an eigenvalue
occurs an even number 2n times, the corresponding singularity
becomes a pole of order n and a chi-squared probability dis-
tribution may result; this has only been observed to occur for
white PM.

F. Case of four Distinct Eigenvalues

For flicker PM with N = 1024, when τ has its maximum
value 341τ0, there is only one eigenvalue. For τ = 340τ0, there
are four distinct eigenvalues, {3.906492× 10−6, 5.941771×
10−7, 3.344254× 10−7, 2.290869× 10−7}. In Fig. 2, we plot
a histogram of the values of the Hadamard variance for flicker
PM for the case N = 1024, τ0 = 1 s, τ = 340 s for the over-
lapping case. A histogram of the results of 5000 independent
runs of the noise simulation process is also shown. Evaluation
of the contour integral was discussed in detail in [1]. The
probability density is given by

P (A) =
1

π

∫ r2

r1

√
r1r2r3r4e

−yAdy√
(y − r1)(r2 − y)(r3 − y)(r4 − y)

− 1

π

∫ r4

r3

√
r1r2r3r4e

−yAdy√
(y − r1)(y − r2)(y − r3)(r4 − y)

(65)

where ri = 1/(2εi).
For this simulation, the average variance is τ = 5.046×

10−6 while the sum of eigenvalues is 5.064× 10−6; the con-
fidence limits within which there is a 50% probability of
finding the variance are 1.484× 10−6 and 6.461× 10−6 and
the median is 3.111× 10−6. For comparison, a chi-squared
probability distribution with three degrees of freedom with the
same average has a 50% probability of finding the variance
between 2.05× 10−6 and 6.93× 10−6.

For values of s that are small compared to N , matrices
such as Hred are large and the computation of eigenvalues is

Fig. 2. Probability Density for N = 1024, τ = 340τ0, for flicker PM. h1 has
been set equal to unity and τ0 = 1, normalized to correspond to 5000 simu-
lation runs. A histogram of the values obtained in the independent simulation
runs is shown with 80 bins in the range from 0 to 0.00004

very time-consuming. Alternatively, noisy time series gener-
ated using (3) will yield noisy values of variance from (8) and
(9); a sufficient number of repetitions will then yield a distri-
bution of values of the variance that will approach the desired
probability distribution. For example with N = 1024, s = 128
the matrix Ho is of order 640× 640, which takes a very long
time to diagonalize. On the other hand (for hα = 1), after
5000 runs the 25%, 50%, 75% levels of the cumulative ditri-
bution are 0.00002711, 0.00003119, 0.00003616, respectively,
and the average variance is 0.00003237. The value of the inte-
gral (13) obtained is 0.00003230. This method was used to
obtain the histogram in Fig. 2.

VIII. MODIFIED NONOVERLAPPING HADAMARD

VARIANCE

The usual form of the Hadamard variance does not distin-
guish between white PM and flicker PM. These noise types are
distinguished by the modified variance defined by first averag-
ing third differences over s consecutive values and then per-
forming the remaining averages over the ensemble of random
numbers. The modified Hadamard variance is defined as

Mod σ2
H(τ) =

〈⎛⎝1

s

j+s−1∑
l=j

Δ
(3)
l,s

⎞
⎠

2〉
. (66)

The sum over l in (66) utilizes a block of data corresponding
to indices from l = j to l = j + 4s− 1, with each data item
included exactly once. The next block of data to be averaged
would include data labeled from j + 4s to j + 8s− 1, and in
general from j + 4Ms to j + (4M + 1)s− 1, where M is an
integer. Starting from j = 1, there will be some maximum value
of M such that

s(4Mmax + 1) ≤ N. (67)

If the equality is satisfied, the data stream consists of complete
blocks; if not, there will be a partial block for which the sum
over s cannot be completed; we then discard the data from such
an incomplete block and work only with complete blocks, for
which each data item is included exactly once.
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Consider a single block, starting from j as in (66) above.
Then, it is straightforward to show that

1

s

l+s−1∑
l=j

Δ
(3)
j,s =

i

s

√
K1

∑
m

wm

|fm|λ
(
sin πms

N )
)4

sin πm
N

× e
−iπm(2j+4s−1)

N (68)

where

K1 =
2hα

3π2τ2Nτ0
(69)

and we have set σ = 1. Averaging the square of this quantity
over the random variables, using (6), then writing the sum over
positive frequencies, we obtain

〈⎛⎝1

s

j+s−1∑
l=j

Δ
(3)
j,s

⎞
⎠

2〉
=

4K

3s2

∑
m>0

1

|fm|2λ
(
sin πms

N

)8(
sin πm

N

)2 (70)

which is the same as for the overlapping case. If there are M
blocks of nonoverlapping data in the average, then the result
will still be given by (70) since the average entails division by
M . If the spacing of frequencies is dense enough to pass to an
integral, we obtain

Mod σ2
H(τ) =

8

3π2τ2

∫ fh

0

df
Sy(f)

f2
(sin(πfτ))

8

(s sin(πfτ0))2
. (71)

To derive expressions for the probability of observing a
particular value of the Hadamard variance, we replace j by
1 + 4Ms and write the sum in (66) over positive frequencies
before averaging

1

s

4Ms+s∑
l=1+4Ms

Δ
(3)
l,s =

√
4K1

s

∑
m>0

(Fmum +Gmvm). (72)

where

FM
m =

(
sin πms

N

)4
|fm|λ sin πm

N

sin q (73)

GM
m = −

(
sin πms

N

)4
|fm|λ sin πm

N

cos q (74)

and where q = πm(1 + 8Ms+ 4s)/N.
With these new definitions for FM

m andGM
m , we define a new

vector CM such that

(CM )T = {FM
1 , GM

1 , F
M
2 , GM

2 , . . . , FN/2}. (75)

Using (32) for the random numbers leads to

1

s

4Ms+s∑
l=1+4Ms

Δ
(3)
l,s =

√
4K1

s2
CTU =

√
4K1

s2
UCT . (76)

Then, the quantity to be averaged is

1

Mmax + 1

∑
M

(
1

s

4Ms+s∑
l=1+4Ms

Δ
(3)
j,s

)2

=
4K1

s2(Mmax + 1)

∑
M

UTCM (CM )TU . (77)

Defining the matrix

(HH)mn =

(
4K1

s2(Mmax + 1)

∑
M

CM (CM )T

)
mn

(78)

the probability of observing a value A of the variance will be

P (A) =

∫
dω

2π
eiω(A−UTHHU/s2)

×
∏
m>0

(
e−

u2
m+v2

m
2σ2

dumdvm
2πσ2

)
. (79)

Diagonalization of the matrix HH leads in the usual way to the
expression for the probability in terms of the eigenvalues εi

P (A) =

∫ fh

0

dω

2π

eiωA∏
i

√
1 + 2iωεi

. (80)

The eigenvalue equation will be

HHψ
(ε) = εψ(ε) (81)

or

4K1

s2(Mmax + 1)

∑
j,M

CM
i (CM

j )Tψ
(ε)
j = εψ

(ε)
i . (82)

The number of eigenvalues can be investigated by reducing the
order of the matrix. Let

φM(ε) =
∑
n

CM
j ψ

(ε)
j . (83)

Then, (81) becomes

4K1

s2(Mmax + 1)

∑
M

CM
i φM(ε) = εψ

(ε)
i . (84)

Multiply by CL
i and sum over the frequency index. This gives∑

M

(Hred)
LMφM(ε) = εφL(ε) (85)

where the reduced matrix has dimension Mmax + 1 and is
given by

(Hred)
LM =

4K1

s2(Mmax + 1)

∑
i

CL
i C

M
i . (86)

Multiply (85) by φLε and sum over L. The result is

4K1

s2(Mmax + 1)
= ε

∑
L

(φLε)2. (87)

IX A RADAR VARIANCE

The analysis methods developed in this paper can be
extended to other variances. For example, these methods can
be applied to cases in which there is dead time between mea-
surements of average frequency during the sampling intervals.
Suppose, e.g., that the measurements consist of intervals of
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length τ = sτ0 during which an average frequency is measured,
separated by dead time intervals of length D − τ during which
no measurements are available, with the possibility of signif-
icant drift during the dead times. Let the index j label the
measurement intervals with j = 1, 2, . . . , N , and let D = dτ0
with d an integer. A variance can be defined in terms of the dif-
ference between the average frequency in the jth interval and
that in the interval labeled by j + r

Δ
(2)
j,r,s =

1√
2

(
yj+r,s − yj,s

)
(88)

where yj,s is the average frequency in the interval j of length
sτ0. The average fractional frequency during the measurement
interval τ is

yr,d,s =
1

τ
(Xrd+s −Xrd). (89)

To eliminate drift during the dead time, a second difference of
frequencies can be used

Δ
(3)
j,r,d,s =

1√
6
(yj+2r,d,s − 2yj+r,d,s + yj,d,s). (90)

This is a third difference in the times. Using trigonometric
identities, it can be reduced to

Δ
(3)
j,r,d,s = 8i

√
K1

∑
m

wm

|fm|λ sin
πms

N

×
(
sin

πmrd

N

)2

e−πim(s+2jd+2rd)/N . (91)

Then, an appropriate variance can be defined as

Ψ(τ,D)2 =

〈(
Δ

(2)
j,r,d,s

)2〉
. (92)

Performing the average and writing the result in terms of a sum
over positive frequencies

Ψ(τ,D)2 =
4hα

3π2τ2(Nτ0)

×
∑
m>0

1

|fm|2λ
(
sin

πms

N

)2(
sin

πmrd

N

)4

.

(93)

If the measurements are sufficiently densely spaced that it is
possible to pass to an integral, this can be shown to reduce to

Ψ(τ,D)2 =
8

3

∫ fh

0

df
Sy(f)

(πfτ)2
(sin(πfrD))

4
(sin(πfτ))

2
.

(94)

When D = τ and r = 1, there is no real dead time and this
variance reduces to the ordinary Hadamard variance.

X. SUMMARY AND CONCLUSION

This paper extends the formalism, developed in [1] for sim-
ulating time series, to time series having frequency drifts such

as are common, e.g., in rubidium standards. The methods are
applied to computing Hadamard variances that are used to
characterize stability of clocks with drifts. These include over-
lapping and nonoverlapping forms of the Hadamard variance,
and the modified Hadamard variance. Just as in the case of
Allan variance discussed in [1], diagonalization of quadratic
forms for the average variances leads to expressions for the
probabilities of observing particular values of the variance for a
given sampling time τ = sτ0. The probabilities are expressed
in terms of integrals depending on the eigenvalues of matri-
ces formed from squares of the third differences that are used
to define the Hadamard variances. The eigenvalues are usually
distinct; only for white PM have eigenvalues been observed
to occur (after much calculation) with multiplicities other than
unity, based on our simulations. Generally speaking, the num-
ber of eigenvalues is equal to the number of terms occurring in
the sum used to define averages of the third-difference operator.

It is well known that a chi-squared distribution with n
degrees of freedom occurs for a variable that is the sum of
squares of n normally distributed random variables. It has been
shown that, with this method, probabilities for the Hadamard
variance, using the present simulation method, are not always–
in fact are rarely–chi-squared distributions. This is because the
frequency dependence, inserted to make the time series obey the
chosen noise power law, disrupts the distribution of eigenvalues
in most cases.

The present approach respects all the standard expressions
for spectral density and the relationships between Hadamard
variance and spectral density for the common power-law noises.
It also yields reasonable simulation results for power-law noises
that diverge more rapidly than flicker noise at low frequencies.
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