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Exponential scaling of clock stability with atom number
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In trapped-atom clocks, the primary source of decoherence is often the phase noise of the oscillator.
For this case, we derive theoretical performance gains by combining several atomic ensembles. For
example, M ensembles of N atoms can be combined with a variety of probe periods, to reduce
the frequency variance to M2−M times that of standard Ramsey clocks. A similar exponential
improvement is possible if the atomic phases of some of the ensembles evolve at reduced frequencies.
These ensembles may be constructed from atoms or molecules with lower-frequency transitions, or
generated by dynamical decoupling. The ensembles with reduced frequency or probe period are
responsible only for counting the integer number of 2π phase wraps, and do not affect the clock’s
systematic errors. Quantum phase measurement with Gaussian initial states allows for smaller
ensemble sizes than Ramsey spectroscopy.

Atomic clocks have many technical and scientific ap-
plications, and also serve as model systems for quantum
metrology. An important result of quantum mechan-
ics is that the variance of phase measurements can be
reduced if entangled particles are used rather than an
equal number of unentangled ones [1, 2]. This result
has been applied to the theoretical analysis of atomic
clocks that operate by repeatedly measuring the phase
difference between atomic qubits and a classical oscilla-
tor [3–10]. However, these analyses have not taken full
advantage of the hybrid nature of passive atomic clocks,
where a classical oscillator with limited coherence repro-
duces the resonance frequency of more coherent quantum
systems. The present model derives an exponential gain
from additional couplings between atoms and the labo-
ratory system, to digitize their relative phase evolution.
It is related to classical analog-to-digital conversion tech-
niques [11] and digital computation of the arctan func-
tion [12], which have been extended to the use of qubits
for the measurement of classical fields [13] and meso-
scopic spins [14]. Here it is shown that if the information
from M ensembles of N atoms is combined classically,
the frequency variance may be reduced to MD1−M/2
times the variance of standard Ramsey clocks with MN
atoms, where the value of D is constrained by the en-
semble size. The method works by extending the range
of invertible phases from the usual −π . . . π interval to
−DM−1π . . .DM−1π. One ensemble is used for normal
phase measurements, while the otherM−1 ensembles are
measured with free-evolution periods that are reduced by
factors D−1, . . . , D1−M , or evolve at frequencies that are
reduced by the same factors. This allows unambiguous
counting of the number of 2π phase wraps that occur in
the first ensemble.

The passive atomic clocks considered here operate by
periodically measuring the differential phase evolution
between a classical oscillator and an ensemble of atoms.
These measurements yield corrections to the oscillator,
which is adjusted in a feedback loop to produce an out-
put signal whose frequency approximates that of the

ideal unperturbed atomic resonance. The stability of
atomic clocks, which describes the uncertainty of this
approximation as a function of the averaging duration,
is limited by quantum projection noise [3] for short du-
rations. If a clock operates by repeatedly applying the
Ramsey technique [15] to measure the phase difference of
N unentangled atoms with respect to the oscillator, the
projection-noise-limited fractional-frequency stability is
σyp(τ) = (ω

√
NTτ)−1, where T is the free-evolution

period, τ is the total duration, and ω is the angular
frequency of the atoms [3, 4]. This stability limit is
an important figure of merit, and it connects atomic
clocks to quantum metrology, because the use of en-
tangled states allows σyp(τ) to scale more favorably as
N−1. A clock that operates for duration τ has a frac-
tional time-variance of var(τ)/τ2 = σyp(τ)

2 + σya(τ)
2,

where σya(τ) is the accuracy, which does not decrease
below the bounds set by the systematic errors. For short
measurement durations, quantum measurement noise re-
stricts the degree to which atomic clocks can reproduce
the ideal frequency ω. For long durations, the dominant
uncertainty comes from systematic errors due to effects
such as unknown environmental factors.

Proposals to use the available atoms more efficiently,
and thereby reduce σyp, include the use of spin-squeezed
states [8, 16–18]; more general quantum measurements
are also possible [6, 9, 10, 19, 20]. Such approaches are
restricted by the fact that the atomic phase evolves as

φ =
∫ T

0
(ω − Ω(t))dt with respect to the classical oscil-

lator, whose frequency is Ω(t). When the atoms evolve
freely, there is no way to unambiguously resolve phases
beyond ±π. Because of this, T is usually constrained to a
duration that is short enough so that the atom-oscillator
phase difference has not drifted outside the −π to π range
of invertibility. Here it is shown that the range of phase
invertibility and therefore T can grow exponentially when
multiple atomic ensembles are available.

Consider a passive atomic clock as described above.
Atomic decoherence is assumed to be negligible com-
pared to oscillator decoherence. This idealization ap-
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proximates many current atomic clocks, where the oscil-
lator is a laser whose output has a 1/f power spectrum
of frequency fluctuations [21]. Then the phase differ-
ence φ can be thought of as a Gaussian random variable
with standard-deviation σφ = αT , where α character-
izes the oscillator noise level. Only phases inside some
interval −θ . . . θ can be unambiguously inverted, and it
is reasonable to require that σφ ≤ θ/6, making phase-
wrapping errors six-sigma events. Other choices of the
ratio σφ/θ are also possible, to reduce this probability
to a level that is considered insignificant. In this Letter,
such a clock is called a standard Ramsey clock. Here
the limit is θ = π/2 and T = π/12α, because the clock
measures a single quadrature of φ. For MN atoms the
projection-noise-limited fractional frequency stability is
σyp(τ) =

√
12α/(ω

√
MNπτ).

It has been suggested [6, 22] that if M oscillators with
frequencies ω, ω/2,. . . ,ω/2M−1 are available, then du-
rations up to 2Mπ/ω can be measured with the pre-
cision of the fastest oscillator. Here we show that
when M atomic ensembles are probed with reduced free-
evolution periods or which evolve at reduced frequencies,
the range of unambiguous phase excursions is extended to
θ = DM−1π, where D0, D1, . . . , DM−1 are either probe-
time or frequency-division ratios. Then the Ramsey free-
evolution period in the presence of 1/f oscillator noise
can grow to T = DM−1π/(6α). The projection-noise lim-
ited stability for the the N unperturbed atoms is then
σyp(τ) =

√
6α/(ω

√
DM−1Nπτ ). This represents a re-

duction in the clock’s frequency variance to MD1−M/2
times the variance of a standard Ramsey clock with the
same number of atoms.
The hypothetical clock contains M ensembles of N

atoms. Atoms are thought of as two-level systems or
qubits. Each ensemble Aj is divided into two sub-
ensembles of N/2 atoms, labeled Xj and Yj , where
j ∈ 0...M − 1. The atoms of all Xj are simultaneously
prepared in the quantum ground state, and probed by
a Ramsey sequence that consists of a π/2-pulse about
the Bloch-sphere x-axis, followed by evolution for a pe-
riod T . During this period, the atoms evolve through

a reduced phase φj =
∫ T

0
(ω − Ω(t))/Djdt with respect

to the oscillator. A possible construction by use of dy-
namical decoupling is described later. The evolution pe-
riod ends with a second π/2-pulse about the x-axis, and
final measurement along the z-axis. The measurement
result is recorded as the fraction of atoms xj in the ex-
cited state. The Yj sub-ensembles are simultaneously
probed in the same way, except that the second π/2-
pulse is about the y-axis, and their results are recorded
as yj. The expectation values 〈xj〉 = (1 + cosφj)/2 and
〈yj〉 = (1+sinφj)/2 are quadratures of φj , and the value
βj = arg((xj − 1/2) + i(yj − 1/2)) is a measurement of
φj , modulo 2π. Here arg is the argument function, whose
range is −π . . . π.
First consider the phase uncertainty of each ensemble.

The measurements xj and yj yield an estimate of the
phase φj . This can be written as φj = βj + 2Pjπ + Gj ,
where Pj is an integer whose value may be unknown,
and Gj is a random variable that completes the equation.
The distribution of Gj values is determined by the arg
function and the scaled binomial random variables xj and
yj. In the limit of large N , Gj approximates a Gaussian
random variable with variance σ2 = 1/N , independently
of the actual phases [3]. To determine the ensemble size
N that is required to reduce the probability of inversion
errors to a certain level, we perform precise numerical
calculations and do not use the Gaussian approximation.

Results from measuring theM ensembles are combined
to yield an estimate of the total phase φ0. This process
can be understood iteratively from lowest frequency to
highest, as shown in Fig. 1. Consider the ensembles Aj

and Aj−1 where the integer Pj is assumed to be known,
and Pj−1 is unknown, but can be derived from the earlier
equations involving φj as:

Pj−1 = DPj +
Dβj − βj−1

2π
+

DGj −Gj−1

2π
(1)

In practice, Pj−1 will be calculated as r(DPj+
Dβj−βj−1

2π )
where r() rounds its argument to the nearest integer.
The probability of assigning an incorrect value to Pj−1

is equal to the probability that |DGj −Gj−1| ≥ π, which
can be made arbitrarily small by choice of ensemble size
N (see Fig. 2). Therefore, if the integer Pj is known, then
the integer Pj−1 can be derived from the measurements.
By induction, it follows that the number of phase wraps
P0 is known, because the evolution time was chosen such
that PM−1 is known to be zero. If errors in the deter-
mination of Pj−1 from Pj are equivalent to a six-sigma
Gaussian events (2 × 10−9 probability), then N = 46 is
the minimum ensemble size when D = 2 (see Fig. 2).
The total error probability during each period T is equal
to M − 1 (the number of applications of Eq. 1) times the
probability shown in Fig 2.

Reduced-frequency clocks might be constructed from
atoms or molecules with lower-frequency resonances,
where the oscillator is derived by frequency division of
the original oscillator [23, 24]. In this case, the frequency
ratios between ensembles φj−1/φj will be given by the
natural frequency ratios of the transitions, rather than
the equal ratios D considered so far, but the previous
arguments still apply, and we can derive a clock variance
that is reduced by the product of the transition-frequency
ratios.

A sequence of π-pulses, known as dynamical-
decoupling, can also reduce the rate of phase evolution.
Optimized pulse sequences have been developed to ex-
tend the coherence time of qubits, with the goal of mak-
ing their phase evolution with respect to the oscillator
as close to zero as possible. The same approach that
rephases qubits for frequency drifts of polynomial order
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(a)

(b)

...

Time

FIG. 1. Depiction of how phase measurements can be combined for improved clock stability. In (a) two ensembles with
frequency ratio D evolve synchronously for period T , and their phase measurements are then combined (see Eq. 1) to derive
the integer number of 2π phase wraps Pj−1 of the second ensemble. In (b) the first ensemble is measured D times during each
measurement of the second ensemble. This information also yields the number of phase wraps. Here the second index is an
integer with range 0 . . . (Dj − 1) and refers to the sequence of measurements during one period T .

n, by n + 1 π-pulses [25], can reduce the phase evolu-
tion to φj = φ0D

−j . For example, the reduced phases
can be generated in the face of linear drift of the os-
cillator frequency Ω(t) = Ω0 + tΩ1 during a period TD

by one π-pulse at TA = (TD/4)(1 +D−j), and a second
π-pulse at TB = (TD/4)(3 − D−j). In this case, φj =
∫ TA

0 (ω−Ω(t))dt−
∫ TB

TA
(ω−Ω(t))dt+

∫ TD

TB
(ω−Ω(t))dt =

∫ TD

0 (ω − Ω(t))D−jdt, as is required. Higher-order se-
quences can be formed by adapting the recipe of ref. [25].
The total evolution period T can contain many decou-
pling sequences of length TD to closely approximate the
ideal value of φj . In real clocks, generating dynamical
decoupling sequences with sufficient fidelity is likely to
be difficult.

As an alternative to the quadrature Ramsey measure-
ments discussed above, one can consider more general
quantum measurements on each ensemble to derive the
phase estimates βj . Optimal measurements will mini-
mize the probability of large phase errors. First pre-
pare an initial state |a〉 and after evolution through a
phase φj , measure in some basis. Bužek et al. [6] sug-
gest a measurement basis spanned by the states [26]

|k〉 = 1√
N+1

∑N
m=0 e

im2πk/(N+1) |N,m〉 where |N,m〉 are
the fully symmetrized states with N qubits and m ex-
citation (e.g. |3, 2〉 = (|011〉 + |101〉 + |110〉)/

√
3).

The probability amplitude of measuring |k〉 is simply
the kth coefficient of the discrete Fourier transform of
the values 〈a| e−imφj |N,m〉, where m ∈ 0 . . .N (see
Fig. 3). For the Gaussian initial states [8] where |a〉 =

(−1)me−(m−N/2)2/(Nc) |N,m〉 (unnormalized) the error
rate is reduced compared to Ramsey measurements with
an equal number of qubits (see Fig. 2). Numerically, we
find an optimal value of c = 0.735 and in this caseN = 24
is the smallest number of atoms that yields an error rate
below 2 × 10−9 when reduced frequency ensembles with
D = 2 are combined. While they are not necessarily op-
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FIG. 2. Probability of 2π phase errors P as a function of en-
semble size N . Circles show the total probability that the
term |(2Gj − Gj−1)/(2π)| in Eq. 1 exceeds 1/2, based on
the binomial distributions of xj , yj , xj−1 and yj−1, averaged
uniformly over the interval −π ≤ φj ≤ π. The calculated
probabilities are approximated by the fit P = 0.07e−0.38N .
Squares represent the probability that 2π phase errors occur
when reduced probe periods are used. In this case the fit is
P = 0.04e−0.48N . The error probabilities for Gaussian ini-
tial states measured in the phase-state basis are shown as (×)
and (+), and their fits are P = 0.05e−0.72N and P = 0.25e−N

respectively.

timal, the Gaussian states were chosen because the tail
of a Gaussian function rapidly approaches zero, for both
the original function and its discrete Fourier transform.
This reduces the probability of large phase errors.

Exponential scaling behavior is also possible if the
atoms of all M ensembles have frequency ω, but each en-
semble Aj freely evolves for a reduced period Tj = D−jT
and is then measured and reprepared. In this case, D
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FIG. 3. Probabilities of |N,m〉 and |k〉 for phase measurement
with Gaussian states. Lines are drawn to guide the eye. The
initial state |a〉 for N = 20 and c = 0.7 in the |N,m〉 basis is
represented by (o). Symbols× + . � show the probabilities of
measuring |k〉 after phase evolution by −2δ, 0, 2δ, and (5/2)δ
respectively, where δ = 2π/(N + 1). Phase shifts correspond
to translation of k. Large phase measurement errors are con-
fined to the low-probability tails of the Gaussian function.
For the discrete Fourier transform, the product of Gaussian
widths in m and k space is proportional to N . The choice of
c is a compromise because the width in k space should be as
narrow as possible to avoid large phase errors, but cutting off
the Gaussian in m space adds unwanted Fourier components.

is an integer and measurement and preparation are as-
sumed to be instantaneous. Here D measurements of
duration Tj from ensemble Aj are combined to derive
the integer number of phase wraps that occur during a
single measurement of ensemble Aj−1 (see Fig. 1). Mea-
surements are iteratively combined as before. Numerical
evaluation shows that if D = 2 and 2π phase errors are
again allowed to occur with 2 × 10−9 probability, then
N = 36 and N = 19 are the minimum ensemble sizes for
Ramsey and Gaussian (c = 0.635) measurements respec-
tively (see Fig. 2). In this case, the total error probability
during each period T is equal to 2M−1−1 times the prob-
ability shown in Fig 2.

The above techniques show that oscillator phase noise
in atomic clocks may be mitigated by use of a collection
of atomic ensembles. The free-evolution period T can,
in principle, be extended far beyond the oscillator’s de-
coherence limit, not only for differential frequency mea-
surements [27–29], but also for clocks that keep time, as
described here. This raises the question of what the ul-
timate limits to atomic coherence are in clocks. In early
work, the millisecond transit time of particles in a ther-
mal beam posed an artificial limit to coherence [15]. For
microwave frequencies, this was extended to about one
second in atomic fountains [30], and 100 seconds in ion
traps [31].

Technical effects associated with fluctuating atomic
frequencies pose one limit to atomic coherence at optical
frequencies and above (ω > 2π × 1014 Hz), but many of
these can be reduced by experimental techniques. Vac-
uum conditions pose another limit, because background-
gas collisions can randomize the atomic phase, or eject
atoms from the trap. More fundamental is the excited-
state lifetime, although some optical transitions have
very long-lived excited states, such as the octupole transi-
tion in Yb+ [32] and 1S0−3P0 transitions in nuclear-spin
zero isotopes [33].

Each ensemble or sub-ensemble may be constructed in
a separate chamber to avoid crosstalk, or a large collec-
tion of atoms can be subdivided into separate ensem-
bles. For the types of phase measurement considered
here, the minimum number requirement for performance
gain while maintaining six-sigma reliability is two ensem-
bles of 36 unentangled atoms or 19 entangled atoms. If
the reduced-frequency clocks are generated by dynami-
cal decoupling, the fidelity of π-pulses is a critical con-
cern [34]. Preparation and read-out speed may limit the
performance of reduced period clocks. These difficulties
are avoided if ensembles with different natural resonance
frequencies can be combined. Technological barriers exist
for all cases, but it is possible that future clock stability
can surpass the limits of oscillator decoherence.
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