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We present a frequency domainmodel of shot noise in the photodetection of ultrashort optical pulse trains using a
time-varying analysis. Shot-noise-limited photocurrent power spectral densities, signal-to-noise expressions, and
shot-noise spectral correlations are derived that explicitly include the finite response of the photodetector. It is
shown that the strength of the spectral correlations in the shot noise depends on the optical pulsewidth, and
that these correlations can create orders-of-magnitude imbalance between the shot-noise-limited amplitude
and phase noise of photonically generatedmicrowave carriers. It is also shown that only by accounting for spectral
correlations can shot noise be equated with the fundamental quantum limit in the detection of optical pulse-
to-pulse timing jitter.
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1. INTRODUCTION
State-of-the-art photonic applications, such as high-speed
signal processing [1], time and frequency dissemination
[2,3], arbitrary optical and rf waveform generation [4–6],
and microwave signal generation for coherent radar and
microwave atomic clocks [7–11], increasingly rely on stable
trains of ultrashort optical pulses, particularly from mode-
locked lasers. These applications nearly always involve
high-speed photodetection, either to produce the required
microwave signals or to assess the quality of the optical wave-
form. In either case, shot noise presents a fundamental limit
on the fidelity of the photodetected signal. Until recently, the
relatively low power handling of high-speed photodetectors
has kept the signal-to-noise ratio (SNR) at or near the limit
imposed by electronic noise sources. Improvements in the
power handling capability of high-speed photodetectors have
increased the achievable microwave power such that the shot-
noise level is significantly higher than the electronic noise
over a broad frequency range [12]. With shot-noise-limited
detection of high-speed optical waveforms now attainable,
correct analysis of the impact of shot noise on measurement
fidelity becomes essential.

Most treatments of photocurrent shot noise assume con-
stant intensity on the detector, or, more precisely, that the
statistics of the optical intensity are stationary [13–15]. In
the absence of quantum optical squeezing, this leads to the
well-known shot-noise current variance of σ2i � 2qIavgΔf ,
where q is the fundamental charge, Iavg is the average photo-
current, and Δf is the measurement bandwidth. Yet the
assumption of stationarity is clearly violated in the detection
of signals with time-varying intensity, such as ultrashort
optical pulses. A more general description of the shot-noise
current variance that includes time-varying signals is en-
capsulated in Campbell’s theorem [16–18]. This more general

formulation was used by [19], which pointed out that for non-
stationary photon rates, only through time averaging can one
directly link the shot-noise current variance to the average
photocurrent. In [20–23], a frequency domain description of
the shot noise of time-varying signals revealed that spectral
correlations explained a reduction in the sensitivity of some
gravitational wave detectors. Time-varying shot-noise models
for vacuum tubes and junction diodes have also been devel-
oped [24–27], where again there are deviations from the
standard, stationary shot-noise model.

Despite the extensive work on nonstationary shot noise, to
our knowledge all analytical developments of the impact of
shot noise on the detection of ultrashort optical pulses have
assumed stationary statistics. Recently we experimentally
demonstrated optical pulse timing measurements exhibiting
significant deviations from the standard, stationary shot-noise
assumptions [28]. This was explained heuristically in terms of
correlations in the shot-noise spectrum that result from a
frequency comb heterodyning against vacuum fluctuations.

Here we complement our experimental results with a
semiclassical, frequency domain description of the shot-
noise-limited photocurrent of optical signals with time-varying
intensity. The focus is on the photodetection of a periodic
train of ultrashort optical pulses, which produces a train of
electrical pulses (see Fig. 1). In the frequency domain, the
electrical pulse train corresponds to an array of photonically
generated microwave carriers at the pulse repetition rate and
its harmonics. This paper addresses the impact of shot noise
on measurements of these microwave carriers. A summary of
the major results is as follows:

1. Frequency domain expressions of the shot-noise-
limited SNR are presented for photonically generated micro-
wave signals. In general, the finite detector response must be
taken into account to correctly predict the measured SNR.
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However, a simplified SNR expression for ultrashort pulse
detection [Eq. (13)] shows one may ignore the detector
response in this case. We also predict that, in some cases,
the shot-noise-limited SNR of a photonically generated micro-
wave signal is not adversely impacted when the microwave
power saturates.

2. Expressions for spectral correlations of the photocur-
rent shot noise are presented. As no correlations are present
under CW illumination, they are the heart of the difference
between the detection of CW light and signals with periodi-
cally varying intensity. It is shown that, in the shot-noise limit,
the upper and lower sidebands of photonically generated
microwave signals are correlated, and the magnitude of the
correlation depends on the optical pulsewidth [Eq. (17)].

3. Expressions for the shot-noise-limited amplitude noise
and phase noise of photonically generated microwave signals
are derived. Due to correlations in the shot-noise spectrum,
the shot-noise-limited phase noise can be orders of magnitude
below the amplitude noise, depending on the width of the
optical pulse [Eq. (20)]. Also, for certain optical pulse shapes
and durations, the shot-noise-limited microwave phase noise
may exceed the amplitude noise. The pulse shape dependence
of the amplitude and phase noise is explored with specific
examples of Gaussian and square-shaped optical pulse inten-
sity profiles. Simplified expressions in the long pulse [Eq. (23)]
and short pulse limits of the shot-noise-limited amplitude
noise [Eq. (24)] and phase noise [Eq. (25)] are also given.

4. For short optical pulses, the shot-noise-limited photo-
current gives the pulse-to-pulse timing jitter of the optical
train perturbed by fundamental quantum fluctuations
[Eq. (27)]. In a semiclassical description, pulse-to-pulse quan-
tum fluctuations may be thought of as random variations in
both the number of photons per pulse and the photon distri-
bution within a pulse. The randomness in the intrapulse pho-
ton distribution results in small deviations in the time of
arrival of the pulse, or timing jitter [29]. Here we show that
only though a time-varying shot-noise analysis can the link
be made between this quantum-limited timing jitter and the
photocurrent shot noise.

The derivation of these results is given in the following
section. It is important to note that the photocurrent deriva-
tion does not include photodetector nonlinearities that be-
come significant when the energy per optical pulse is large.
The photodetector nonlinearities most commonly encoun-
tered that could affect shot-noise-limited measurements are
saturation of the microwave power and amplitude-to-phase
(AM–PM) conversion. The shot-noise-limited photocurrent
under microwave power saturation is incorporated by a
straightforward extension of the linear model. Recent studies
have demonstrated techniques to strongly mitigate AM–PM
conversion [30,31], and its impact on the presented analysis
is discussed in Section 3. At still higher optical powers, optical
nonlinearities, such as two-photon absorption, may be
present, but are not considered here. Also not explicitly con-
sidered are detectors with gain, such as avalanche detectors
and photomultiplier tubes. The relationship between our
analysis and quantum optical quadrature squeezing, a gener-
alization to other noise sources, and the practical limitations
of shot-noise-limited measurements are also discussed in
Section 3. In Section 4 we conclude the paper.

2. SEMICLASSICAL PHOTOCURRENT
SHOT-NOISE ANALYSIS
A. Defining the Photocurrent Power Spectral Density
We assume detection of an optical field in the coherent state;
i.e., we are not examining the detection of squeezed states
[32]. We may therefore apply a semiclassical treatment of
the photocurrent to derive the photocurrent spectrum,
correlations, and amplitude and phase noise of photonically
generated microwave signals. The model we use follows that
of [13], where the photocurrent i�t� is the sum of elementary
impulses, given by

i�t� �
X
k

Xkh�t − kΔt�: (1)

Here, h�t� is the impulse response of the photodetector, and X
is a random variable equal to either 1 or 0, depending on

Fig. 1. Time and frequency domain depictions of optical and photodetected electrical pulse trains. (a) Optical pulse train intensity profile.
(b) Photodetected electrical pulse train when the optical pulsewidth is much shorter than the photodetector’s impulse response time. (c) Spectrum
of the optical intensity profile. (d) Power spectrum of the photocurrent. Symbols are defined in the text.
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whether a photon is detected in (very short) time interval Δt.
Note that the charge of an electron q is included in h�t� such
that

Z
h�t�dt � q: (2)

The probability p of a photodetection event in Δt is given by
the photon rate and the detector quantum efficiency as [33]

p � η

hν
Popt�t�Δt≡ λ�t�Δt; (3)

where Popt�t� is the time-varying optical power, η is the quan-
tum efficiency of the detector, h is Planck’s constant, ν is the
average optical frequency, and λ�t� is the photoelectron rate.
The optical intensity profile, Popt�t�, is assumed to be a train of
pulses, given by

Popt�t� � P0

X
n

f �t − nTr�; (4)

where f �t� is the profile of a single pulse, and Tr is the pulse
period. Since we are only concerned with shot noise, we take
Popt�t� as otherwise noiseless. Depictions of optical and elec-
trical pulses are shown in Figs. 1(a) and 1(b), respectively.

Given the probability of a photodetection event, we treat
the photocurrent as a stochastic process from which we wish
to obtain the spectral density. From the spectral density, we
then derive the shot-noise-limited SNR of the photonically
generated microwave signals. Since any measurement of this
SNR will average over many optical pulses, the time-averaged
spectral density is used to represent these measurements. We
therefore model the double-sided (positive and negative
frequencies) photocurrent spectral density as

Si�f � � lim
T→∞

1
T
hjFTfi�t�gj2i�A2∕Hz�; (5)

where FT fi�t�g denotes the finite-time Fourier transform of
i�t�, defined over time interval T [34], and h·i denotes the
ensemble expectation value.

B. Shot-Noise Power and Signal to Noise
As detailed in Appendix A, substitution of Eq. (1) into Eq. (5)
gives the photocurrent spectral density of

Si�f � � jH�f �j2�λavg � Sλ�f ��; (6)

where λavg is the average photoelectron generation rate, Sλ�f �
is the photoelectron spectral density, and H�f � is the transfer
function of the photodetector, given by the Fourier transform
of the impulse response. The average photocurrent Iavg is
given by qλavg. The first term in brackets in Eq. (6) is the shot
noise, whose single-sided (positive frequencies only) power in
a narrow bandwidth Δf centered at frequency f is

Pshot�f � � 2jHn�f �j2qIavgRΔf �W�: (7)

Here the photodetector transfer function has been normalized
such that H�f � � qHn�f � (and Hn�0� � 1), and R is the termi-
nating load impedance over which the power is measured.

Note that the effective impedance must be modified when
the detector has an internal termination [35,36]. The shot-
noise power of Eq. (7) is the same result one obtains assuming
stationary statistics [14,15,37], thus verifying that, when aver-
aged over many pulses, the shot-noise power spectral density
(PSD) in ultrashort optical pulse detection is consistent with
standard shot-noise analyses.

For a train of optical pulses, Sλ�f � is a series of discrete
tones at harmonics of the pulse repetition rate. From
Eq. (3), Sλ�f � is related to the power spectrum of the optical
intensity profile, SP�f �, by

Sλ�f � �
�
η

hν

�
2
SP�f �; (8)

where SP�f � is given by

SP�f � � lim
T→∞

1
T
hjFTfPopt�t�gj2i; (9)

that is, SP�f � is the PSD of the optical pulse intensity profile.
We stress that SP�f � does not represent the PSD of the optical
electric field. The single-sided microwave power of a har-
monic at frequency nf r , measured over Δf , is given by

Pμ�nf r� � 2q2jHn�nf r�j2Sλ�nf r�RΔf : (10)

Depictions of the spectrum of the pulse intensity profile
and the photocurrent power spectrum are shown in Figs. 1(c)
and 1(d), respectively.

With the shot-noise power and the power of the microwave
harmonics now defined, a frequency domain SNR at the
shot-noise limit may be expressed as

SNR�nf r� �
Pμ�nf r�

2jHn�nf r�j2qIavgRΔf
: (11)

It is important to note that both the power of the repetition
rate harmonic and the shot-noise power scale with the photo-
detector transfer function.

The SNR expression of Eq. (11) can be simplified when the
optical pulsewidth is much less than the detector’s impulse
response. In this case we may take the double-sided spectral
density of the optical intensity profile as a series of delta func-
tions, all of equal magnitude. The single-sided microwave
power is then twice the DC power, modified by the detector’s
transfer function [38]:

Pμ�nf r� � 2I2avgjHn�nf r�j2R: (12)

Substitution of Eq. (12) into Eq. (11) yields

SNR�nf r� � Iavg∕�qΔf �: (13)

The SNR of each microwave carrier increases linearly with
average optical power Pavg as Iavg � �qη∕hν�Pavg, regardless
of the detector’s impulse response. Nonlinear behavior of real
photodetectors leads to a saturation of microwave power Pμ

when the energy per pulse is high [31,39,40]. Although our
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photocurrent model does not account for photodetector non-
linearity, a straightforward extension to describe the SNR for
a photodiode in saturation may be incorporated by consider-
ing saturation simply as a power-dependent change in Hn�f �
[39–41]. Under this assumption, since the shot noise also
scales with Hn�f �, Eq. (13) is still valid. A graphical represen-
tation of the photocurrent spectrum with a power-dependent
Hn�f � is shown in Fig. 2.

A related quantity is the shot-noise-limited relative intensity
noise (RIN) spectrum, given by the ratio of the one-sided
shot-noise PSD to the power at DC [29,35,38,42]:

SRIN � 2q
Iavg

� 2 hν
ηPavg

�Hz−1�: (14)

This expression will be compared to the shot-noise-limited
amplitude noise of a harmonic of the repetition rate in
Section 2.D.

C. Noise Correlations
Here we show that there are spectral correlations in the shot
noise symmetric about photonically generated microwave
signals at harmonics of f r . These correlations manifest them-
selves, for example, in measurements where the photocurrent
is demodulated with a reference signal. Correlated frequency
components are then folded upon one another, allowing them
to interfere. To determine the correlations in the photocurrent
shot-noise spectrum, we use the double-sided, time-averaged
cross-spectral density of the photocurrent, given by

Si�f ;f 0�� lim
T→∞

1
T

�
FT

�X
k

Xkh�t−kΔt�
�
·F �

T

�X
l

Xlh�t− lΔt�
��

:

(15)

Keeping only the noise term (details are in Appendix A),
this reduces to

Sin�f ; f 0� � H�f �H��f 0� lim
T→∞

1
T
�ΛT �f − f 0��; (16)

where ΛT �f � is the finite-time Fourier transform of λ�t�. The
noise at frequencies f and f 0 is said to be correlated if Sin �f ; f 0�
is nonzero. For CW illumination, Sin �f ; f 0� is nonzero only for
f � f 0, since the frequency content of a photodetected coher-
ent CW signal is restricted to DC. For a train of ultrashort
pulses, however, Sin �f ; f 0� is nonzero whenever f − f 0 � nf r .
Importantly, the upper and lower sidebands symmetric about
harmonics of the repetition rate at frequencies nf r � δf are
also correlated. This may be seen by considering both positive
and negative frequencies of the spectrum, as shown in Fig. 3.
From Eq. (16), the noise at frequency nf r � δf is correlated
with the noise at frequency −nf r � δf , with the degree of cor-
relation proportional to ΛT �2nf r�. Since λ�t� is real,
ΛT �f � � Λ�

T �−f �. Therefore frequencies nf r � δf are corre-
lated. The magnitude of the correlation between frequencies
nf r � δf is then equal to the magnitude of the correlation
between frequencies nf r � δf and −nf r � δf , given by [34]

jC�nf r � δf ; nf r − δf �j � jC�nf r � δf ;−nf r � δf �j

� jSin�nf r � δf ;−nf r � δf �j
�Si�nf r � δf �Si�−nf r � δf ��1∕2

� j ~Popt�2nf r�j
~Popt�0�

: (17)

Here ~Popt�f � is the Fourier transform of Popt�t�, and
jC�nf r � δf ; nf r − δf �j ≤ 1. Thus the degree of correlation be-
tween sidebands is independent of the photodetector re-
sponse, depending only on the spectrum of the optical
pulse train intensity profile. As illustrated in Fig. 1(c), the ratio
of ~Popt�2nf r� to ~Popt�0� scales with the inverse optical pulse-
width; therefore the shorter the optical pulse, the higher
the degree of correlation. The fact that shot noise is correlated
between upper and lower sidebands implies that shot noise
does not contribute equally to the phase and amplitude

Fig. 2. Photodetector saturation modeled as a power-dependent
transfer function. (a) Power spectrum of a photodetected train of ul-
trashort optical pulses under low (red/gray) and high (black) power
illumination. Dotted lines represent the rolloff in the response of the
photodetector. Shot noise is represented as the shaded regions for low
(red/light gray) and high (dark gray) power illumination. In this
example, there is a decrease in the photodetector response at high
frequencies as the photodetector saturates. This saturation affects
the shot-noise spectrum as well as the power in the microwave har-
monics. (b) Power in one of the microwave harmonics and shot noise
at an adjacent frequency as the average photocurrent is increased.
The onset of photodetector saturation leads to a rollover of the power
of the microwave harmonic and a decrease in the shot-noise power.

Fig. 3. Correlations in the sidebands about a photonically generated
microwave carrier, revealed with a double-sided representation of the
photocurrent power spectrum.
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quadratures of the microwave signal. This is shown in the
following section.

D. Amplitude Noise, Phase Noise, and Timing Jitter
We now consider the shot-noise-limited amplitude and phase
noise of a photonically generated microwave carrier. From
the phase noise we also derive the shot-noise-limited pulse-
to-pulse timing jitter. A standard method of phase and ampli-
tude noise measurement of a microwave signal is to multiply
the microwave carrier with a noiseless reference signal at the
same frequency, represented as

�1� a�t�� cos�2πf 0t� θ�t�� · cos�2πf 0t�Φr�; (18)

where a�t� and θ�t� are the zero-mean amplitude and phase
fluctuations of the microwave signal under test, respectively,
and Φr is the phase offset of the reference signal. When the
two signals are in phase (Φr � 0), amplitude noise is mea-
sured, and when the signals are in quadrature (Φr � π∕2),
phase noise is measured [43]. For the detection of ultrashort
optical pulses, we model phase and amplitude noise measure-
ments as the isolation of a harmonic of the repetition rate with
a bandpass filter followed by multiplication with the reference
signal [28]. The demodulated photocurrent is then given by

im�t��
��X

k

Xkh�t−kΔt�
�
�g�t�

�
· cos�2πnf rt�Φr�; (19)

where g�t� is the impulse response of a bandpass filter, and �
denotes the convolution operation. By deriving the spectral
density of the demodulated photocurrent (Appendix B), the
single-sideband amplitude or phase noise relative to the signal
power at nf r may be expressed as

LAM;PM � qIavgjHn�nf r�j2R
Pμ�nf r�

�
1� j ~Popt�2nf r�j

~Popt�0�

· cos�2Φopt�nf r� −Φopt�2nf r��
�
�Hz−1�; (20)

where the plus sign in the brackets is for amplitude noise and
the minus sign is for phase noise, and Φopt�f � is the spectral
phase of the pulse intensity profile. Note that this is not simply
one-half the noise-to-signal ratio of the photocurrent [inverse
of Eq. (11)], as is commonly assumed [10,11,35,38,44–48].
Equation (20) contains the additional term in brackets that
is a direct result of shot-noise correlations that are symmetric
about the microwave carrier, described above in Section 2.C.
Since for long pulses the correlations disappear, the term in
brackets may be considered as the deviation of the shot noise
from the long pulse limit.

Equation (20) is applicable to any photonically generated
microwave signal, regardless of the details of the photode-
tected optical intensity variations. To illustrate the impact
of pulse shape and pulsewidth, we now consider the ampli-
tude and phase noise of microwave signals derived from pho-
todetecting Gaussian and square-shaped optical pulse trains.

1. Gaussian Pulses
Consider a train of Gaussian-shaped pulses, represented as

Popt�t� �
Ep

τG
			
π

p
X
n

expf−��t − nTr�∕τG�2g; (21)

where Ep is the energy per pulse, Tr is the pulse period, and
τG is related to the pulse intensity full width at half maximum
τP by τP � 2

											
ln�2�

p
τG. By calculating ~Popt�f � [as shown in

Fig. 4(a)] and substituting into Eq. (20), the amplitude and
phase noise of a microwave carrier at frequency nf r become

LAM;PM � qIavgjHn�nf r�j2R
Pμ�nf r�

�1� expf−�2πnf rτG�2g�: (22)

Here we have used the fact that for Gaussian pulses, nonzero
Φopt�f � is only due to an arbitrary time delay, leading to
2Φopt�nf r� � Φopt�2nf r�. A plot of the amplitude and phase
noise deviation from the long pulse limit for Gaussian pulses
is shown in Fig. 4(b).

It is interesting to examine the noise in the long and short
pulse limits. In the long pulse limit the magnitude of the shot-
noise correlations about nf r goes to zero, and the term in
brackets in Eq. (22) is unity. In this case, the shot noise is
equally distributed in amplitude and phase, yielding

Fig. 4. (a) Spectrum of the optical intensity profile of a train of Gaussian-
shaped pulses. The pulse duty cycle (τp∕Tr) is 0.25. (b) Shot-noise
deviation from the long pulse limit for a train of Gaussian pulses.
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LAM;PM � qIavgjHn�nf r�j2R
Pμ�nf r�

: (23)

In the ultrashort pulse limit, Eq. (22) may be simplified by
noting nf rτG ≪ 1 and using Eq. (12). In this limit

LAM � q
Iavg

� 1
2
SRIN (24)

and

LPM � q
2Iavg

�2πnf rτG�2: (25)

Note that in the short pulse limit, the shot noise resides ex-
clusively in the amplitude quadrature of the microwave signal,
and only then can be easily related to the shot-noise-limited
RIN. The phase noise can be several orders of magnitude be-
low the amplitude noise, depending on the optical pulsewidth.
For example, for 100 fs duration optical pulses, the predicted
ratio of the shot-noise-limited amplitude noise to phase noise
measured on a 10 GHz harmonic is ∼50 dB.

The microwave phase noise is often used to determine the
optical pulse-to-pulse timing jitter [49]. The shot-noise-limited
mean-square pulse-to-pulse timing jitter is recovered from the
microwave phase noise measured at nf r by

σ2t �
1

�2πnf r�2
Z

f r∕2

0
2LPM�f �df �s2�; (26)

where σt is the r.m.s. timing deviation. Substituting Eq. (25)
into Eq. (26) gives

σ2t �
q

2Iavg
f rτ2G � 1

2η
hν
Ep

τ2G: (27)

This differs from the quantum-fluctuation-induced variance
in the time of arrival of the optical pulses themselves by 1∕η
[29]. (The difference arises from the fact that, for η < 1, there
is an additional randomness associated with detection that in-
creases the noise [50].) Thus only by accounting for correla-
tions in the shot-noise spectrum may we conclude that shot
noise corresponds to the fundamental quantum limit of the
timing precision of ultrashort optical pulses.

2. Square Pulse Train
The shot-noise behavior for a train of square pulses provides
an interesting contrast to the behavior of Gaussian pulses. The
pulse intensity profile for a train of square pulses is

Popt�t� �
Ep

τp

X
n

Π
��t − nTr�

τp

�
; (28)

where

Π
�
t
τp

�
�

�
1 for − τp∕2 ≤ t ≤ τp∕2
0 otherwise

: (29)

In this case the shot-noise-limited phase and amplitude
noise are

LAM;PM � qIavgjHn�nf r�j2R
Pμ�nf r�

�1� jsinc�2πnτpf r�j

· cos�2Φopt�nf r� −Φopt�2nf r���: (30)

Unlike the Gaussian pulse train, Φopt�f � must be included to
account for the sign changes in the optical pulse intensity
spectrum [shown in Fig. 5(a)] that give an additional phase
shift of π radians. Just as with Gaussian pulses, the amplitude
and phase noise in the long pulse limit are given by Eq (23).
For short optical pulses, the amplitude noise is the same as
given in Eq. (24), and the phase noise reduces to

LPM � q
12Iavg

�2πnf rτp�2: (31)

As with the Gaussian pulse train, calculation of the pulse
timing jitter from Eq. (31) gives the quantum-fluctuation-
induced variance in the time of arrival of square optical
pulses. Phase and amplitude noise deviations from the long
pulse limit for a train of square pulses are shown in Fig. 5(b).
In between the long and short pulse limits, the amplitude and
phase noise deviations oscillate, and the phase noise may
exceed the amplitude noise. This is due to the sign changes
in the sinc function that, for certain optical pulsewidths, give

Fig. 5. (a) Pulse intensity profile spectrum of a train of square pulses
with a duty cycle of 0.25. (b) Shot-noise deviation from the long pulse
limit for a train of square pulses.
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2Φopt�nf r� −Φopt�2nf r� � π. However, the error resulting
from ignoring this sign change is small, and would only need
to be considered if measurement uncertainty within ∼1 dB is
required.

3. DISCUSSION
The most significant result of the presented analysis is the
predicted shot-noise imbalance between amplitude and phase
quadratures of photonically generated microwave signals. For
the detection of a train of ultrashort optical pulses, the shot-
noise contribution to the phase noise can be reduced to a neg-
ligible level. In the frequency domain, this can be interpreted
as correlations in the shot-noise spectrum that result in noise
cancellation in a phase noise measurement, and constructive
interference in an amplitude noise measurement. Recent
measurements have confirmed this behavior [28]. The time do-
main interpretation considers the pulse-to-pulse optical timing
jitter as fundamentally limited by the variance in the photon
distribution within a pulse, and this jitter is pulsewidth depen-
dent. Upon photodetection, the photon limit manifests itself as
photocurrent shot noise. When the optical pulse-to-pulse jitter
is retrieved through a measurement of the phase of a gener-
ated microwave carrier, the shot noise shows the same
dependence on the optical pulsewidth as the photon variance.

As mentioned at the beginning of Section 2, the presented
analysis is semiclassical and does not apply to the detection of
nonclassical states, such as squeezed light. Although this work
does represent a kind of shot-noise “squeezing,” the term
squeezing is so closely associated with the detection of non-
classical states that we avoid its use here. Quantum optical
quadrature squeezing, where quantum-limited noise is shifted
from the amplitude to the phase, or vice versa, of the optical
field, has an analogous description, however. Quantum optical
quadrature squeezing can also be described in terms of spec-
tral correlations, though in this case the noise correlations
are in the optical domain [51]. Such correlations change the
SNR of the directly detected signal; that is, the shot-noise
power of Eq. (7) is changed. For a time variance of the optical
intensity, noise correlations appear after the square-law detec-
tion of the photodetector. While this results in a phase/
amplitude imbalance in the generated microwave field, there
is no effect on Eq. (7).

Shot-noise correlations can impact photonic systems other
than a perfectly periodic pulse train. Analyses of arbitrary
waveform generation, pulse interleavers [52], and some opti-
cal heterodyne measurement techniques [53] can benefit from
including shot-noise spectral correlations. Moreover, the con-
cept of spectral noise correlations is quite general, and may be
considered as the consequence of a cyclostationary noise
process [26]. Perhaps it is not surprising then that shot noise
is not the only noise source associated with the detection of
ultrashort optical pulses that will display a phase/amplitude
imbalance on a photonically generated microwave carrier.
Any noise on the optical pulse train that is periodically varying
will produce correlations in the photocurrent noise spectrum.
It is interesting to note that this should apply to quantum
noise in optical amplification. Using, for example, a doped-
fiber amplifier, the dominant photocurrent noise resulting
from optical amplification is described semiclassically as
signal-spontaneous beat noise [54,55]. When amplifying a
train of ultrashort pulses, this signal-spontaneous beat noise

should exhibit the same spectral correlation behavior in the
photocurrent as shot noise, reducing its impact on the micro-
wave phase. In this case the often-ignored spontaneous-
spontaneous beat noise may in fact determine the microwave
phase noise floor. Correlated optical noise has also been
observed in harmonically mode-locked lasers, where the
supermode noise power has been shown to be sensitive to
the optical pulsewidth [56]. Another possible time-varying
noise source is photodetector flicker noise [45]. If this noise
source is present only when current is being generated, then
it too can produce phase/amplitude imbalance. However, it is
likely that this noise will scale with the electrical, as opposed
to the optical, pulsewidth.

Finally, it is important to consider the practical limitations
in measuring large microwave phase/amplitude imbalance in
shot noise. The phase noise levels in particular are quite low,
and can be well below the thermal noise limit at room temper-
ature. For example, to measure the shot-noise-limited phase
noise on a 10 GHz harmonic for a 100 fs pulse train generating
10 mA of average photocurrent, the system temperature
would need to be <2 μK. Also, it is possible that AM–PM
conversion during photodetection could alter the phase/
amplitude shot-noise imbalance. Preliminary experimental
evidence supports this notion [28]. Although AM–PM conver-
sion has been measured in detectors and quantified in a
parameter that converts the measured RIN to microwave
phase noise [30,31], more work is needed to relate these
measurements to a similar conversion in shot noise. Addition-
ally, phase bridge measurements, traditionally used to deter-
mine microwave phase noise, can have residual sensitivity
to amplitude noise [57]. With the amplitude noise orders of
magnitude higher than the phase noise, careful attention must
be paid to reducing the amplitude sensitivity of the phase
bridge.

4. CONCLUSION
A complete description of the shot-noise spectral density in
the detection of ultrashort optical pulses requires incorporat-
ing spectral correlations that result from the time-varying
nature of the optical intensity. Here we have derived expres-
sions for shot-noise correlations, and have shown the impact
of these correlations on the phase and amplitude noise of
photonically generated microwave signals. This analysis has
allowed us to clearly establish the link between photocurrent
shot noise and the fundamental quantum limit of the timing
jitter of optical pulses. The analysis reveals a new regime
of microwave phase noise sensitivity where the shot-noise
contribution can be made negligible, provided the optical
pulsewidth on the photodetector is short enough.

APPENDIX A
Here we supply details on the derivation of the photocurrent
power spectrum and shot-noise correlations. To this end we
define the photocurrent cross spectrum as

Si�f ; f 0� � lim
T→∞

1
T

�
FT

�X
k

Xkh�t − kΔt�
�

× F �
T

�X
l

Xlh�t − lΔt�
��

; (A1)
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where the finite-time Fourier transform is defined by

FTfx�t�g≡
Z

T∕2

−T∕2
x�t�e−i2πf tdt≡ XT �f �: (A2)

Interchanging the summation and Fourier-transform oper-
ations yields

Si�f ; f 0� � lim
T→∞

1
T

�X
k

XkFTfh�t − kΔt�g

·
X
l

XlF �
Tfh�t − lΔt�g

�
; (A3)

or

Si�f ; f 0� � lim
T→∞

1
T

X
k

X
l

hXkXliHT �f �H�
T �f 0�

× expf−i2πf kΔtg expfi2πf 0lΔtg; (A4)

where HT �f � is the finite-time Fourier transform of h�t�. Indi-
vidual photoelectron events are considered statistically inde-
pendent. The ensemble expectation of the product of random
variables Xk and Xl is therefore given by [13]

XkXl �
�

λ�kΔt�Δt for k � l
λ�kΔt�λ�lΔt�ΔtΔt for k ≠ l

�
; (A5)

where λ�t� � �η∕hν�P�t� is the photoelectron generation rate.
As h�t� is the impulse response of the detector, we may as-
sume that it is of finite duration, and let T be much greater
than the duration of h�t�. In this case, HT �f � � H�f �. Using
this substitution,

Si�f ; f 0� � H�f �H��f 0� lim
T→∞

1
T

X
k

λ�kΔt�Δt expf−i2π�f − f 0�kΔtg

�
X
k

X
l;l≠k

�kΔt�λ�lΔt�ΔtΔt

× expf−i2πf kΔtg expfi2πf 0lΔtg: (A6)

Letting Δt → 0

Si�f ; f 0� � H�f �H��f 0� lim
T→∞

1
T

�Z
T∕2

−T∕2
λ�τ�e−i2π�f−f 0�τdτ

�
ZZ

T∕2

−T∕2
λ�τ�λ�τ0�e−i2πf τei2πf 0τ0dτdτ0

�
(A7)

or

Si�f ; f 0� � H�f �H��f 0� lim
T→∞

1
T
�ΛT �f − f 0� �ΛT �f �Λ�

T �f 0��:
(A8)

For f � f 0, this becomes the photocurrent spectral density:

Si�f � � jH�f �j2�λavg � Sλ�f ���A2∕Hz�; (A9)

where

λavg � lim
T→∞

1
T
ΛT �0� (A10)

and

Sλ�f � � lim
T→∞

1
T
jΛT �f �j2: (A11)

Correlations in the photocurrent noise may be determined
by selecting from Eq. (A8) the noise cross spectrum:

Sin�f ; f 0� � H�f �H��f 0� lim
T→∞

1
T
�ΛT �f − f 0��: (A12)

This is the same expression as given in Eq. (16).

APPENDIX B
Derivation of the demodulated photocurrent follows similar
lines as the development in Appendix A, but is more involved.
An abbreviated version of this derivation may be found in [28].
First, we rewrite Eq. (18) to explicitly include the voltage am-
plitudes of the signal under test and reference:

Vm�t� � V1�1� a�t�� cos�2πf rt� θ�t�� · V2 cos�2πf rt�Φr�:
(B1)

For a�t� ≪ 1 and θ�t� ≪ 1 radian, the voltage output of the
mixer when Φr � 0 is

Vm�t� �
V 1V2

2
�1� a�t��: (B2)

When Φr � π∕2, the mixer output is

Vm�t� �
V1V2

2
θ�t�: (B3)

Thus the phase noise is given by the ratio of the in-
quadrature condition to the nominal DC value when in-phase.
We now turn to the case when the signal under test is
the bandpass-filtered photocurrent. In this case we write the
spectral density of the mixer output as

Sm�f � � lim
T→∞

1
T

�



FT

���X
k

Xkh�t − kΔt�
�
� g�t�

�
· cos�2πf rt�Φr�

�




2
�
: (B4)
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Moving the convolution, multiplication, and Fourier trans-
form inside the summation yields

Sm�f � � lim
T→∞

1
T

�




X

k
XkFTf�h�t − kΔt� � g�t��

· cos�2πf rt�Φr�g





2
�
: (B5)

Evaluating the Fourier transform yields

Sm�f � � lim
T→∞

1
T

�




X

k
Xk�HT �f �e−i2πf kΔtGT �f ��

�
�
1
2
δ�f − f r�eiΦr � 1

2
δ�f � f r�e−iΦr

�




2
�
; (B6)

where GT �f � is the finite-time Fourier transform of g�t�, and
δ�f � is the Dirac-delta function. Strictly speaking, the delta
function representation requires the evaluation of the limit
T → ∞. However, it is a reasonable approximation as long
as 1∕T ≫ f r . As in Appendix A, we also let T be much greater
than the duration of h�t� and g�t� such that HT �f � � H�f � and
GT �f � � G�f �. Convolution and squaring yields the sum of the
following four terms:

1
4
jH�f − f r�j2jG�f − f r�j2 ·

X
k

X
l

hXkXli

· expf−i2π�f − f r�kΔtg expfi2π�f − f r�lΔtg; (B7a)

1
4
jH�f � f r�j2jG�f � f r�j2 ·

X
k

X
l

hXkXli

· expf−i2π�f � f r�kΔtg expfi2π�f � f r�lΔtg; (B7b)

1
4
H�f − f r�H��f � f r�G�f − f r�G��f � f r�e2iΦr

·
X
k

X
l

hXkXli expf−i2π�f − f r�kΔtg · expfi2π�f � f r�lΔtg;

(B7c)

1
4
H��f − f r�H�f � f r�G��f − f r�G�f � f r�e−2iΦr

·
X
k

X
l

hXkXl i expfi2π�f − f r�kΔtg · expf−i2π�f � f r�lΔtg;

(B7d)

Using similar arguments as in Appendix A, expression (B7a)
reduces to

1
4
jH�f − f r�j2jG�f − f r�j2

�
lim
T→∞

1
T
ΛT �0� � Sλ�f − f r�

�
: (B8)

Likewise, expression (B7b) becomes

1
4
jH�f � f r�j2jG�f � f r�j2

�
lim
T→∞

1
T
ΛT �0� � Sλ�f � f r�

�
: (B9)

Expression (B7c) yields

1
4
H�f − f r�H��f � f r�G�f − f r�G��f � f r�e2iΦr

·
�
lim
T→∞

1
T

Z
T∕2

−T∕2
λ�τ�ei2π�2f r�τdτ

� lim
T→∞

1
T

ZZ
T∕2

−T∕2
λ�τ�λ�τ0�e−i2π�f−f r�τei2π�f�f r�τ0dτdτ0

�
; (B10)

which may be expressed as

1
4
H�f − f r�H��f � f r�G�f − f r�G��f � f r�e2iΦr

×
�
lim
T→∞

1
T
ΛT �2f r� � lim

T→∞

1
T
ΛT �f − f r�Λ�

T �f � f r�
�
: (B11)

Expression (B7d) reduces to the complex conjugate of ex-
pression (B11). To sum these four terms, we exploit the fact
that H�f �, G�f �, and ΛT �f � are the Fourier transforms of real
functions, each term is band-limited byG�f �, and we only need
only to consider the baseband section of each term. Thus we
use the following relationship:

H�f − f r�G�f − f r� � H��f � f r�G��f � f r�: (B12)

Note that this relation is equivalent to requiring that the
product H�f �G�f � is symmetric about f r . This is necessary
for fullest cancellation of the upper and lower sidebands in
the phase noise.

Expressions (B8) and (B9) may now be summed to give

1
2
jH�f − f r�j2jG�f − f r�j2

�
lim
T→∞

1
T
ΛT �0� � Sλ�f − f r�

�
: (B13)

Summation of expression (B11) with its complex conjugate
yields

1
2
jH�f − f r�j2jG�f − f r�j2Sλ�f − f r�

· cos�2Φr � 2ΦH�f − f r� � 2ΦG�f − f r� � 2ΦΛ�f − f r��

� 1
2
jH�f − f r�j2jG�f − f r�j2 lim

T→∞

1
T
jΛT �2f r�j

· cos�2Φr � 2ΦH�f − f r� � 2ΦG�f − f r� −ΦΛ�2f r��:
(B14)

The output of the mixer is then given by the summation of
Eqs. (B13) and (B14), or
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Sm�f � �
1
2
jH�f − f r�j2jG�f − f r�j2

×
�
lim
T→∞

1
T
ΛT �0� � lim

T→∞

1
T
jΛT �2f r�j

· cos�2Φr � 2ΦH�f − f r� � 2ΦG�f − f r� −ΦΛ�2f r��
�

� 1
2
jH�f − f r�j2jG�f − f r�j2Sλ�f − f r�

× �1� cos�2Φr � 2ΦH�f − f r� � 2ΦG�f − f r�
� 2ΦΛ�f − f r���: (B15)

For phase noise, 2Φr � 2ΦH�f − f r� � 2ΦG�f − f r� �
2ΦΛ�f − f r� � π. Otherwise Eq. (B15) would have a nonzero
DC term, in disagreement with Eq. (B3). Equation (B15) then
reduces to

Sm�f � �
1
2
jH�f − f r�j2jG�f − f r�j2

×
�
lim
T→∞

1
T
ΛT �0� � lim

T→∞

1
T
jΛT �2f r�j

· cos�π � 2Φopt�f r� −Φopt�2f r��
�
; (B16)

or

Sm�f � �
1
2
jH�f − f r�j2jG�f − f r�j2λavg

·
�
1� j ~Popt�2f r�j

~Popt�0�
· cos�π � 2Φopt�f r� −Φopt�2f r��

�
:

(B17)

Here we have used the fact that ΦΛ�f − f r� is nonzero only
when f � 0, andΦΛ�−f r� � −Φopt�f r�. That is, the photoelec-
tron spectral phase is equal to the spectral phase of the optical
intensity profile. In accordance with Eq. (B3), the double-
sided phase noise is the ratio of Eq. (B17) to the maximum
DC offset [i.e., the second term in Eq. (B15) when its phase
is set to zero]:

Sθ�f ��
1
2

λavg
Sλ�f r�

�
1�j ~Popt�2f r�j

~Popt�0�
· cos�π�2Φopt�f r�−Φopt�2f r��

�
:

(B18)

In terms of the photocurrent and microwave power, the
single-sided phase noise (units rad2∕Hz) is given by

Sθ�f � �
2qIavgjHn�f r�j2R

Pμ�f r�

�
1 −

j ~Popt�2f r�j
~Popt�0�

· cos�2Φopt�f r� −Φopt�2f r��
�
; (B19)

where Eq. (10) has been used. The single-sideband phase
noise (units dBc/Hz) is half this value, as given in Eq. (20).
A similar expression may be derived for the amplitude noise,
by letting 2Φr �2ΦH�f − f r��2ΦG�f − f r��2ΦΛ�f − f r�� 0
in Eq. (B15), and again normalizing by the maximum DC

offset. In this case the minus sign in the brackets of Eq. (B19)
becomes a plus sign.
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