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The interplay between interactions and decoherence in many-body systems is of fundamental importance
in quantum physics. In a step toward understanding this interplay, we obtain an exact analytic solution for
the nonequilibrium dynamics of Ising models with arbitrary couplings (and therefore in arbitrary dimension)
and subject to local Markovian decoherence. Our solution shows that decoherence significantly degrades the
nonclassical correlations developed during coherent Ising spin dynamics, which relax much faster than predicted
by treating decoherence and interactions separately. We also show that the competition of decoherence and
interactions induces a transition from oscillatory to overdamped dynamics that is absent at the single-particle or
mean-field level. These calculations are applicable to ongoing quantum information and emulation efforts using
a variety of atomic, molecular, optical, and solid-state systems. In particular, we apply our results to the NIST
Penning trapped-ion experiment and show that the current experiment is capable of producing entanglement
amongst hundreds of quantum spins.
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I. INTRODUCTION

Understanding strongly correlated quantum systems in
the presence of decoherence is a fundamental challenge in
modern physics. While decoherence generally tends to degrade
correlations, it is now widely appreciated that it can also give
rise to many-body physics not possible with strictly coherent
dynamics [1–3], and can be used explicitly for the creation
of entanglement [4–6]. Regardless of whether one’s intention
is to minimize or to harness decoherence, determining its
effect on interacting many-body systems is central to quan-
tum simulation [7], quantum information [8], and quantum
metrology [9]. So far, this understanding has been hindered
by the computational complexity of numerical techniques for
open systems and the scarcity of exact analytic solutions.
Exact solutions for dynamics of interacting quantum systems
in dimensions greater than one are rare even in the absence
of decoherence, and to our knowledge no such solutions have
been obtained in the presence of local decoherence.

The central result of this manuscript is an exact solution,
Eqs. (10)–(12), for the time dependence of all two-spin
correlation functions in a system of spins interacting via
arbitrary Ising couplings in any dimension, and subject to
local Markovian decoherence. Our solution is applicable
to a broad range of important quantum systems, including
trapped ions [10–12], polar molecules [13,14], Rydberg atoms
[15,16], neutral atoms in optical cavities [17,18], optical
lattice clocks [19], superconducting qubits [20], quantum
dots [21], and nitrogen vacancy centers [22]. Nonequilibrium
dynamics in the presence of Ising interactions is highly
nonclassical, and can be exploited in such systems for the
generation of entanglement for use in quantum metrology
and quantum information [23–28] (for instance, spin-squeezed
states [23] or cluster states [29] can be produced). Here
we apply our solution to trapped-ion experiments because
(1) the relative importance of decoherence and coherently
driven quantum correlations is controllable, (2) the tunable
long-ranged interactions are generically frustrated, making

large-scale numerical simulations impractical, and (3) these
experiments are the most developed, with nonequilibrium
dynamics already being explored [10]. We will show that
entanglement—in the metrologically useful form of spin
squeezing—can be produced amongst hundreds of spins
under current experimental conditions in Ref. [10]. We also
demonstrate that expected improvements to this experiment
should allow for the production of macroscopic superposition
states (MSSs) in the near future.

The structure of the manuscript is as follows. In Sec. II
we describe the model, which includes coherent dynamics
due to arbitrary Ising interactions, and an extremely general
form of Markovian decoherence including both dephasing,
spin relaxation, and spin excitation. In Sec. III, we review
the quantum trajectories approach to open quantum systems,
which is central to our solution of the model. Section IV
describes the application of quantum trajectories to computing
various observables relevant to both relaxation and growth
of quantum correlations. The idea is to (a) calculate these
quantities exactly along a particular trajectory, and then (b)
carry out the averaging over trajectories analytically. As we
will show, the resulting expressions reveal that the dynamics
exhibits a transition from oscillatory to overdamped behavior,
an effect that is not present at the single-particle level or in a
mean-field treatment of the interactions. With these solutions
in hand, Sec. V considers the applications to trapped-ion
experiments in general, with a particular focus on relaxation
and squeezing in the recent experiment in Ref. [10]. We
conclude in Sec. VI by considering several open questions
and promising directions for future research.

II. MODEL

We consider far-from-equilibrium dynamics of a long-
ranged Ising Hamiltonian,

H = 1

N
∑
i<j

Jij σ̂
z
i σ̂ z

j . (1)
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FIG. 1. (Color online) Schematic illustration of the various
decoherence processes: T1 spin relaxation with rates �ud,�du (red
and blue spin, respectively), and T2 dephasing with rate �el (green
spin). In atomic systems, one way this decoherence can arise is due
to spontaneous emission from an excited level (top panels) [32].

Here σ̂ a (a = x,y,z) are Pauli matrices, N is the total number
of spins, and the subscripts (i,j ) are site indices. Our results
are valid for arbitrary Jij , but given the relevance to numerous
experiments we will sometimes consider power-law couplings
Jij = J |r i − rj |−ζ , where r i is the position of the ith spin
in lattice units (ζ = 3 for polar molecules, ζ = 6 for Rydberg
atoms, and 0 < ζ < 3 for trapped ions). In the presence of local
decoherence, the most general Markovian dynamics of the
system reduced density matrix obeys a master equation [30],

h̄ρ̇ = −i(Heffρ − ρH†
eff) + D(ρ). (2)

The effective Hamiltonian Heff and dissipator D have
contributions from all jump operators J ∈ {σ̂−

j

√
�ud/2,σ̂+

j√
�du/2,σ̂ z

j

√
�el/8 : 1 � j � N },

Heff = H − i
∑
allJ

J †J , D(ρ) = 2
∑
allJ

J ρJ †, (3)

where σ̂±
j = 1

2 (σ̂ x
j ± iσ̂

y

j ). The jump operators σ̂−, σ̂+, and σ̂ z

give rise to spontaneous deexcitation, spontaneous excitation,
and elastic dephasing, respectively (see Fig. 1). We refer to
the spin-changing processes (σ̂±) as Raman decoherence, and
the spin-preserving processes (σ̂ z) as Rayleigh decoherence.
In what follows we assume an initially pure and uncorrelated
density operator ρ(0) = |ψ(0)〉〈ψ(0)|, with

|ψ(0)〉 =
⊗

j

∑
σj

fj (σj )|σj 〉. (4)

Here σj = ±1 are the eigenvalues of σ̂ z
j , fj (1) =

cos(θj /2)eiϕj /2, and fj (−1) = sin(θj /2)e−iϕj /2, for arbitrary
θj and ϕj .

III. QUANTUM TRAJECTORIES APPROACH

Our approach to the solution of Eq. (2) for the chosen initial
conditions and arbitrary {�ud, �du,�el} is based on the quantum
trajectories method [31], in which |ψ(0)〉 is time evolved with
the effective Hamiltonian,

Heff = H − i

2

∑
j

(
�r

2
+ �el

4
+ 2γ σ̂ z

j

)
, (5)

and the dynamics are interspersed with stochastic applications
of the jump operators. In Eq. (5) we have defined �r =

t1 t2 t3 t40 1 2 3 4 t

= (t2 − t1) + (t4 − t3) = t1 + (t3 − t2) + (t − t4)τup
j τdown

j

σ̂+
j σ̂+

jσ̂−
j σ̂−

j

FIG. 2. (Color online) Series of Raman flips of the spin on site
j can be formally accounted for as a magnetic field of strength
2Jjk/N acting for a time τ

up
j − τ down

j . In the notation defined

below, this series of jumps is represented by the operator Q̂j ∝
σ̂+

j (t1)σ̂−
j (t2)σ̂+

j (t3)σ̂−
j (t4).

�ud + �du and γ = 1
4 (�ud − �du). According to the standard

prescription [31], a particular trajectory consists of a set of
jump times {t1,t2, . . .}, which are selected by equating the norm
of the wave function to a random number uniformly distributed
between 0 and 1. Choosing which jump operator to apply at
each time requires calculating all expectation values 〈J †J 〉.
BecauseH is Hermitian and commutes with all productsJ †J ,
it has no effect on the selection of the jumps, which can
therefore be obtained for each spin independently (since the
anti-Hermitian part of Heff does not couple different spins).
We note, however, thatH does not commute with the recycling
term D(ρ) defined in Eq. (3). With the jump times and jump
operators in hand, we define a string of nj (time-labeled) jump
operators on site j as Q̂j = J 1

j (t1
j ) × · · · × J nj

j (t
nj

j ). The time
evolution of the wave function along a trajectory is then

|ψ(t)〉 = T

⎛
⎝e−iHeff t

∏
j

Q̂j

⎞
⎠ |ψ(0)〉, (6)

where the time-ordering operator T enforces that the jump
operators are interspersed in the time evolution according to
their time labels.

The time ordering of the Rayleigh jumps can be ignored:
because [σ̂ z

j ,Heff] = 0 and [σ̂ z
j ,σ̂±

j ] = ±2σ̂±
j , all Rayleigh

jumps can be evaluated at t = 0 (their commutation with
Raman jumps only affects the overall sign of the wave
function). To the contrary, the Raman jump operators are
structurally similar to a transverse field, and do not commute
with Heff ; their time ordering cannot be so easily accounted
for. However, imagine that spin j undergoes a single Raman
jump, created by applying σ̂+

j at time t . This jump operator
not only flips spin j into the up position, but also removes
all parts of the wave function in which spin j pointed up
immediately before time t . Hence it is as this spin pointed
down before time t , and up after time t . Since spin j is always
in an eigenstate of σ̂ z

j it is a spectator to the Ising dynamics,
but it does influence the other spins via the Ising coupling
Jjk; formally it acts on spin k as an inhomogeneous magnetic
field of strength 2Jjk/N that pointed down before t and up
after t . For a spin on site j that undergoes multiple Raman
processes, the same reasoning allows us to treat it as a field of
strength 2Jjk/N that acts for a time τj = (τ up

j − τ down
j ), where

τ
up(down)
j is the total amount of time that spin j spends pointing

up(down) along z (see Fig. 2). Hence we are free to evaluate
all of the jump operators at t = 0 to give |ψ̃〉 = ∏

j Q̂j |ψ〉,
thus ignoring the time ordering in Eq. (6), so long as we evolve
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|ψ̃〉 with a modified time-evolution operator

U = exp

⎡
⎣−it

⎛
⎝H′ +

∑
j

(ηj − iγ )σ̂ z
j

⎞
⎠

⎤
⎦ . (7)

Here ηj = 1
N t

∑
k Jjkτk accounts for the magnetic field of

all Raman-flipped ions, H′ is obtained from H by ignoring
the spin-spin couplings to spins that have undergone Raman
jumps, and γ accounts for the non-Hermitian part of Heff that
is not proportional to the identity operator.

The expectation value of an arbitrary operator Ô at the
end of a particular quantum trajectory is therefore given
by 〈Ô〉 = 〈ψ̃ |U†ÔU |ψ̃〉/〈ψ̃ |U†U |ψ̃〉, and formally taking the
average over all trajectories (denoted by an overbar) we have

tr[ρÔ] = 〈Ô〉. Along with Eq. (7), these constitute a formal
solution for the dynamics of any observable. We now proceed
to derive closed-form expressions for the transverse spin-
length and spin-spin correlation functions—which have not
been derived previously even in the absence of decoherence.
These are the central result of this paper.

IV. TRANSVERSE-SPIN LENGTH AND
CORRELATION FUNCTIONS

Relaxation of the transverse-spin length in an Ising-type
spin model is a canonical example of equilibration in a closed
quantum system [33–35]. In the present model, such relaxation
occurs due to a combination of the proliferation of quantum
fluctuations and the equilibration with the environment (de-
coherence). Our theoretical treatment allows for both effects
to be treated simultaneously, and therefore, in principle, the
disentangling of these two physically different (but conse-
quentially similar) processes. While such relaxation does not
directly indicate quantum correlations or entanglement, in
the absence of decoherence it nevertheless is entirely due to
the buildup of quantum correlations—at the mean-field level
coherent relaxation is absent. The correlations that develop
during the dynamics can be understood in more detail by
looking at two-spin correlation functions—for instance, these
furnish a complete description of spin squeezing [23]. In the
absence of decoherence and for all-to-all coupling (ζ = 0),
it is well known [23] that the transverse-spin component
revives at a time τr = Nπh̄/(2J ), and that a highly entangled
macroscopic-superposition state (MSS) appears at time τr/2.
This state is characterized by vanishing spin length but
maximum transverse-spin fluctuations, and our solution can
be used to assess the robustness of such fluctuations against
decoherence.

To calculate the transverse-spin length along a particular
trajectory, we assign the discrete-valued variables Rj and
Fj to each lattice site, which count the number of Raman
jumps and Rayleigh jumps, respectively. As we have dis-
cussed earlier, all jump operators can be applied at t = 0,
and therefore specifying the {Rj ,Fj ,τj } on each site fully
determines transverse-spin length along that trajectory. The
transverse spin component in direction ϕ and on site j

is given simply in terms of the spin-raising operator on
that site, 〈Sϕ

j 〉 = cos ϕ〈Sx
j 〉 + sin ϕ〈Sy

j 〉 = Re[e−iϕ〈σ̂+
j 〉], and

generalizing solutions obtained in Refs. [33,36], we find

〈σ̂+
j 〉 = αjβj sin θj e

iϕj

2gj (2γ t)

∏
k �=j

e
2iJkj τk

N
gk[2αkt(γ − iJjk/N )]

gk(2γ tαk)
.

(8)

Here gj (x) = ∑
σ |fj (σ )|2e−σx , αj = δRj ,0 (δ being the

Kronecker-delta symbol), βj = (−1)Fj , and the details of the
calculation are given in Appendix A. Defining a function
P(R,F ,τ ) that determines the probability distribution of these
variables on a given lattice site, we have

〈σ̂+
j 〉 =

∑
allR

∑
allF

∫
. . .

∫ ∏
k

dτkP(Rk,Fk,τk)〈σ̂+
j 〉. (9)

Equation (9) constitutes a formal solution for 〈σ̂+
j 〉, and it

can always be evaluated efficiently by averaging 〈σ̂+
j 〉 over

stochastically generated trajectories. However, because the
noise is uncorrelated from site to site, and accordingly the
expression inside the product of Eq. (8) depends only on local
stochastic variables, these sums and integrals factor into N
independent sets (each over the three stochastic variables),
admitting closed-form expressions. We note that, while most
quantum trajectories simulations average over a finite number
of stochastically selected trajectories, thus giving rise to
statistical errors, our approach effectively averages over an
infinite number of trajectories. Hence our solutions have no
statistical approximation. We have checked for small spin
systems that they produce results identical to a full numerical
solution of the master equation [Eq. (2)].

At this point, to avoid unnecessary complications in the
ensuing expressions, we will take our initial state to point along
the x axis (θ = π/2, ϕ = 0), but our results easily generalize
[37]. In Appendix B we explain how to evaluate these sums
and integrals, and here we simply quote the result. Defining

�(J,t) = e−λt [cos(t
√

s2 − r) + λt sinc(t
√

s2 − r)],

with λ = �r/2, s = 2iγ + 2J/N , and r = �ud�du, we find

〈σ̂+
j 〉 = 1

2
e−�t

∏
k �=j

�(Jjk,t), (10)

where the total decoherence rate is defined � = 1
2 (�r + �el)

[38]. Similar calculations to those described above yield spin-
spin correlation functions

〈σ̂ μ

j σ̂ ν
k 〉 = 1

4
e−2�t

∏
l /∈{j,k}

�(μJjl + νJkl,t), (11)

〈σ̂ μ

j σ̂ z
k 〉 = 1

2
e−�t�(μJjk,t)

∏
l /∈{j,k}

�(μJjl,t), (12)

with

�(J,t) = e−λt (is − 2γ )t sinc(t
√

s2 − r) (13)

and μ,ν = ±. These correlation functions, along with similar
ones obtained by interchange of the site indices, completely
determine the spin-spin correlations. Each instance of σ̂ x or σ̂ y

in an observable generates an overall multiplicative factor of
e−�t , which would also occur if the decoherence were treated
in the absence of interactions; this is the effect of decoherence
at the single-particle level. The structure of �(J,t) captures
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FIG. 3. (Color online) Plots of �(J,t) for γ = 0 and �r/�c
r ∈

{0,1/4,1/2,3/4,1}, showing a transition from oscillatory to damped
behavior.

the interplay of decoherence and the many-body physics, and
could not have been deduced without our exact treatment. The
additional damping present in �(J,t) has a straightforward
physical origin, which is made particularly clear by the
quantum trajectories formalism. Even if a spin on site j has
not undergone any quantum jumps, it experiences a fluctuating
(in time and space) longitudinal magnetic field ηj due to the
various other spins that have undergone quantum jumps, and
thus experiences additional dephasing.

We note that for γ = 0 the function �(J,t) undergoes
a qualitative transition from oscillatory (s2 > r) to damped
(s2 < r) behavior when �r = �c

r ≡ 4J/N (Fig. 3). Therefore,
when there is only one coupling strength J , for instance in the
case of all-to-all or nearest-neighbor couplings, dynamics of
the transverse-spin length and correlation functions undergoes
the same transition. We note that the factors of e−�t in
Eqs. (10)–(12) may make this transition difficult to observe
experimentally, since the correlations are rapidly suppressed
at the critical �c

r . It is important to realize that, while such
a transition is expected for a single spin in the presence of a
coherence restoring drive (i.e., a transverse field), it does not
occur for a noninteracting system in the absence of a transverse
field. Hence, in the Ising model, this transition is a manifestly
many-body effect, arising from the competition of decoherence
and the coherent dynamics generated by the interactions. It
is interesting to note that, if the Ising interaction had been
treated at the mean-field level, the system would behave as
a collection of independent spins undergoing decoherence
and experiencing a (self-consistently determined) longitudinal
field. Thus this transition cannot be captured at the mean-field
level.

V. APPLICATION TO A TRAPPED-ION
QUANTUM SIMULATOR

Trapped-ion systems can simulate the Hamiltonian in
Eq. (1), and can accurately measure the decoherence rates
�el, �ud, and �du. We note that both the Born-Markov ap-
proximation and the assumption of uncorrelated decoherence
processes are extremely well justified for trapped-ion systems
[32]. Sample averaged spin-length and spin-spin correlation
functions are easily measured in these experiments by looking
at the length (and its shot-to-shot fluctuations) of various
projections of the Bloch vector. In the trapped-ion experiments
discussed in Ref. [10], when ζ = 0 the time scale at which

1.5 2.0 2.5 3.0 3.5 4.0 4.5
6
4
2
0
2
4
6

ψ

ζ = 0 ζ = 3

Γ = 0.06J
Γ = 0

Γ = 0.06J
Γ = 010

lo
g 1

0
ξ(

ψ
)

FIG. 4. (Color online) (a) Example of how spin squeezing is
affected by decoherence (dashed lines are � = 0.06J ; solid lines
are for � = 0) for long-ranged (red, ζ = 0) and short-ranged (blue,
ζ = 3) interactions.

quantum correlations become important for these observables,
τc, scales with some power of the ion number: τc ∼ N 1/3

for spin squeezing, ∼N 1/2 for transverse-spin relaxation, and
∼N for the creation of MSS’s. Taking N = 100 and � =
0.06J , as is typical in that experiment, we expect the proper
incorporation of decoherence to be quantitatively important
even for spin squeezing, despite it being a relatively short-time
indication of entanglement.

Equations (11) and (12) allows us to exactly calculate the
effect of decoherence and the finite range of interactions on the
maximum spin squeezing achievable in experiment. Figure 4
shows the expected maximal squeezing and antisqueezing as
a function of angle ψ in the yz plane for ζ = 0,3, with � =
0.06J and �el = 8�ud = 8�du (typical experimental numbers
in [10]). The effects of decoherence are more pronounced for
shorter-range interactions due to the longer time scales for
maximal squeezing. For this calculation the spins are assumed
to be initialized (prior to the Ising dynamics) in a coherent state
pointing along the x axis, and we define the spin-squeezing
parameter,

ξ (ψ) =
√
N�Sψ

〈Ŝx〉
, (14)

with �A =
√

〈Â2〉 − 〈Â〉2
, Ŝψ = 1

2

∑
j σ̂

ψ

j , and σ̂
ψ

j =
cos(ψ)σ̂ y

j + sin(ψ)σ̂ z
j . Notably, in the long-ranged interaction

limit [39] the spin squeezing is degraded but still quite
appreciable under current experimental conditions (for short-
range interactions, ζ = 3, the spin squeezing is completely
destroyed by decoherence).

For the current experimental parameters there is essen-
tially no spin revival, and no indication of a MSS at τr/2.
However, assuming 97 ions and expected improvements in
the experiment [10] (a roughly 50-fold increase in the ratio
J/�), in Fig. 5 we show that transverse-spin revivals begin to
appear. In that figure, the dotted line is obtained by treating
the decoherence at the single-particle level, which amounts
to attaching a decaying exponential e−�t to the operators σ̂ x

and σ̂ y . We note that this treatment would be exact if the
decoherence were only of the Rayleigh type (�r = 0). The
solid line is the full solution from Eq. (10); the large (∼35-fold)
discrepancy between the single-particle and exact results
indicates that a proper accounting of Raman decoherence
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FIG. 5. (Color online) Transverse-spin relaxation and revivals
for ζ = 0, with parameters corresponding to expected experimental
capabilities in [10] (blue solid line). The dotted blue line is obtained by
treating decoherence at the single-particle level, and underestimates
the detrimental effect of Raman decoherence by about a factor of 35.
Inset: transverse-spin fluctuations peaking at time τr/2. Experimental
parameters, exact treatment (red solid line); experimental parameters,
single-particle treatment (red-dotted line); no decoherence (black
dashed line).

processes, which is achieved in our solution, will be essential
for understanding the behavior of this experiment. In the inset
of Fig. 5 we plot the transverse-spin fluctuations �Sx at times
near τr/2. The peak in these fluctuations (which would achieve
unity in the absence of decoherence) is a result of strong
transverse-spin correlations in an emerging MSS, indicating
that the expected improvements to the experiments will bring
within reach the production of MSS’s of ∼100 ions in the near
future.

VI. CONCLUSIONS

These calculations provide a rare glimpse into the exact
structure of relaxation dynamics in an open and strongly
interacting quantum system. The surprisingly large detrimen-
tal effect of Raman decoherence—which far exceeds that
expected from a single-particle picture—is the result of an
interaction-mediated back action of decohered spins on the
remaining many-body system, in which each Raman-flipped
spin behaves as a (temporally) fluctuating magnetic field.
Interestingly, our exact solution reveals that the net effect
of this back action is (for ζ = 0) a global rotation in spin
space, which in principle can be corrected if the arrival times
of spontaneously scattered photons are recorded. These ideas
will be explored in more detail in future work.

Note added. Recently, we were informed of simultaneous
calculation of spin-spin correlation functions for quantum
Ising models in the absence of decoherence [40].
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APPENDIX A: EXPRESSIONS FOR SPIN LENGTH
AND CORRELATION FUNCTIONS ALONG

A SINGLE TRAJECTORY

As in the main text, we write the state of a single spin
as

∑
σ z

j
fj (σ z

j )|σ z
j 〉, where σ z

j is an index that takes on

the eigenvalues of the operator σ̂ z
j , fj (1) = cos(θj /2)eiϕj /2,

and fj (−1) = sin(θj /2)e−iϕj /2. The initial state of the entire
system is taken to be a direct product of states for each
individual spin:

|ψ(0)〉 ≡
⊗

j

∑
σj

fj (σj )|σj 〉

=
∑

σ z
1 ,...,σ z

N

f1(σ z
1 ) × · · · × fN (σ z

N )|σ z
1 , . . . ,σ z

N 〉.

(A1)

As discussed in the main text, evaluating all of the Rayleigh
jumps at t = 0 can be accomplished by changing ϕj → ϕj +
πFj , which rotates the spin on site j by an angle π if it
has undergone an odd number of Rayleigh jumps. Raman
jumps can be incorporated at t = 0 by setting θj = 0(π ) if
the final Raman jump on site j was σ̂+

j (σ̂−
j ). We therefore

define f̃j (σ z
j ) to be the modification of fj (σ z

j ) under those
transformations. We also note that spins having undergone
one or more Raman jumps are treated as an effective magnetic
field, and not included in the spin-spin coupling term of the
Hamiltonian. This is accomplished by changing Jij → αiαjJij

(with αj = δRj ,0) in the Hamiltonian and including an effective
magnetic field. Therefore, we can write the (time-dependent)
wave function |ψ̃(t)〉 evolving under U [as defined in Eq. (6)
of the manuscript] as

|ψ̃(t)〉 =
∑

σ z
1 ,...,σ z

N

exp

⎡
⎣−it

⎛
⎝ 1

N
∑
i,j

αiαjJijσ
z
i σ z

j +
∑

j

(ηj − iγ )σ z
j

⎞
⎠

⎤
⎦ f̃1

(
σ z

1

) × · · · × f̃N
(
σ z
N

)∣∣σ z
1 , . . . ,σ z

N
〉
. (A2)

In order to calculate the transverse-spin length we will first calculate 〈σ̂+
j 〉 = 〈ψ̃(t)|σ̂+

j |ψ̃(t)〉/〈ψ̃(t)|ψ̃(t)〉, and at the end obtain

〈Ŝx〉 = Re(
∑

j 〈σ̂+
j 〉).

Let’s imagine, in particular, calculating 〈ψ̃(t)|σ̂+
1 |ψ̃(t)〉 (there is nothing special about the first spin; this just makes the notation

in what follows less confusing). Because the wave function enters twice, this would involve two sums like the one in Eq. (A2),
over σ z

j and σ ′z
j , but very few terms survive: we need σ z

1 = −1, σ ′z
1 = 1, and for all j �= 1 we must have σ z

j = σ ′z
j , so the matrix

042101-5
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element is given by

〈ψ̃(t)|σ̂+
1 |ψ̃(t)〉 = f̃ ∗

1 (1)f̃1(−1)
∑

σ z
2 ,...,σ z

N

∣∣f̃2
(
σ z

2

)∣∣2 × · · · × ∣∣f̃N
(
σ z
N

)∣∣2
exp

⎡
⎣2it

⎛
⎝η1 +

N∑
j=2

1

N α1αjJ1j σ
z
j + iαjγ σ z

j

⎞
⎠

⎤
⎦ . (A3)

If αj = 0, the j th spin always has a well-defined value of σ z
j and the choice to include the term γ σ z

j in the exponentiated
sum (or not) only affects the overall normalization of the wave function. By multiplying γ by αj (in the exponentiated sum),
we have chosen to not include the term γ σ z

j , and this is properly accounted for when normalizing this expectation value
below. In order to obtain 〈σ̂+

1 〉 we must divide by the (nonconserved) normalization of the wave function 〈ψ̃(t)|ψ̃(t)〉. Defining
gj (x) = ∑

σ |fj (σ )|2e−σx (as in the manuscript), we obtain

〈σ̂+
1 〉 = f̃ ∗

1 (1)f̃1(−1)

g1(2γ t)

∑
σ z

2 ,...,σ z
N

∣∣f̃2
(
σ z

2

)∣∣2

g2(2α2γ t)
× · · · ×

∣∣f̃N
(
σ z
N

)∣∣2

gN (2αN γ t)
exp

⎡
⎣2it

⎛
⎝η1 +

N∑
j=2

1

N α1αjJ1j σ
z
j + iαjγ σ z

j

⎞
⎠

⎤
⎦ . (A4)

This expression can be simplified by making the following set of observations: (1) f̃ ∗
1 (1)f̃1(−1) = α1β1e

iϕ1 sin(θ1)/2 [as in the
text, βj = (−1)Fj ], (2) the α1 in the exponent is irrelevant, because if it takes the value 0 the entire expression for〈ψ̃(t)|σ̂+

1 |ψ̃(t)〉
vanishes, and (3) the summand factorizes into a product where each term contains only local (i.e., on a single site) variables, and
hence the sum of products can be exchanged for a product of sums. Taking observations (1)–(3) into account, we obtain

〈σ̂+
1 〉 = sin(θ1)eiϕ1

2g1(2γ t)
α1β1

N∏
j=2

⎛
⎝∑

σ z
j

|f̃j (σ z
j )|2

gj (2αjγ t)
exp[2itαjσ

z
j (J1j /N + iγ )]e2iJ1j τj /N

⎞
⎠ (A5a)

= sin(θ1)eiϕ1

2g1(2γ t)
α1β1

N∏
j=2

(
e2iJ1j τj /N gj [2αj t(γ − iJ1j /N )]

gj (2γ tαj )

)
. (A5b)

Therefore, we can write

〈Ŝx〉 = Re
N∑

j=1

⎡
⎣ sin(θj )eiϕ1

2gj (2γ t)
αjβj

∏
k �=j

(
e2iJjkτk/N gk[2αkt(γ − iJjk/N )]

gk(2γ tαk)

)⎤
⎦ . (A6)

The calculation of correlation functions follows from extremely similar considerations. For instance, let’s consider G−+
jk ≡

〈σ̂−
j σ̂+

k 〉. In this case, the operators in the expectation value only connect two states if −σ ′z
j = σ z

j = 1, σ ′z
k = −σ z

k = 1, and
σ ′z

l = σ z
l whenever l /∈ {j,k}. Therefore, much as before we have

G−+
jk = sin(θj ) sin(θk)ei(ϕk−ϕj )

4gj (2γ t)gk(2γ t)
αjαkβjβk

∏
l /∈{j,k}

(
e2i(Jkl−Jjl )τl/N gl[2αlt(γ − i[Jkl − Jjl]/N )]

gl(2γ tαl)

)
. (A7)

Computing correlation functions involving a single σ̂ z, such as Gz+
jk ≡ 〈σ̂ z

j σ̂+
k 〉, can be achieved by inserting σ z

j into the sum in
Eq. (A4), yielding

Gz+
jk = sin(θk)eiϕkαkβk

2gk(2γ t)

[
αj

cos2(θ/2)e−2γ t − sin2(θ/2)e2γ t

gj (2γ t)
+ (1 − αj )κj

] ∏
l /∈{j,k}

(
e2iJkl τl/N gl[2αlt(γ − iJkl/N )]

gl(2γ tαl)

)
. (A8)

Assuming one or more Raman flip occurred, the variable κj takes on the values ±1 if the final Raman jump is σ̂±
j .

APPENDIX B: ANALYTIC EVALUATION OF STOCHASTIC
AVERAGING OF TRAJECTORIES

At this point in the calculation, for clarity of presentation,
we set ϕj = 0 and θj = π/2 (for all j ), so all spins point along
the x axis at t = 0. Defining P(R,F ,τ ) to be the probability
distribution of the variables R, F , and τ on a single site (it is

the same on every site), the trajectory averaged expectation
value is given by

〈σ̂+
j 〉 =

∑
allR

∑
allF

∫
dτ1 . . .

∫
dτN 〈σ̂+

j 〉
∏
k

P(Rk,Fk,τk).

(B1)
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To begin, we note that the probability distribution can be
decomposed as P(R,F ,τ ) = Pel(F)Pr(R,τ ), which is valid
because the probability of Rayleigh jump is independent
of whether a Raman jump has occurred (and vice versa).
The occurrence of random processes follows a Poissonian
distribution, so Pel(F) = e−�elt/4(�elt/4)F/F!, and we have
also calculated Pr. The result depends on whether R is
even or odd (the proof is simple but requires some careful
reasoning, and we do not give it here). We parametrize
the R-odd solution by μ = (R − 1)/2 (which will run over
all non-negative integers), and we parametrize the R-even
solutions by μ = (R − 2)/2 (once again running μ over all

non-negative integers), and obtain

Podd
r (μ,τ ) = �r

4
e−�r t/2 (�ud�du/4)μ

(μ!)2
e−2τγ (t2 − τ 2)μ,

Peven
r (μ,τ ) = �ud�dut

4
e−�r t/2 (�ud�du/4)μ

μ!(μ + 1)!
e−2τγ (t2 − τ 2)μ.

(B2)

By evaluating the sum
∞∑

F=0

Pel(F)eiπF = e−�elt/2, (B3)

we obtain

〈σ̂+
j 〉 = e−�elt/2

2 cosh(2γ t)

∑
R1,...,RN

∫
dτ1 . . .

∫
dτN

⎡
⎣P(Rj ,τj )αj

∏
k �=j

e2iJjkτk/N cosh[2αkt(γ − iJjk/N )]

cosh(2γ tαk)
Pr(Rk,τk)

⎤
⎦

= e−�elt/2

2 cosh(2γ t)

⎡
⎣∑

Rj

∫
dτjαjP(Rj ,τj )

⎤
⎦

⎡
⎣∏

j �=k

∑
Rk

∫
dτke

2iJjkτk/N cosh[2αkt(γ − iJjk/N )]

cosh(2γ tαk)
Pr(Rk,τk)

⎤
⎦ .

Because αj gives 1 if there have not been any Raman flips at site j and 0 otherwise, the term in the first square bracket is just the
probability that there has been no Raman flip on site j , which is given by e−�rt/2 cosh(2γ t) [this comes from evolving the wave
function of a single spin pointing along x with the effective Hamiltonian Eq. (4)]. Therefore, we have

〈σ̂+
j 〉 = 1

2
e−�t

⎡
⎣∏

j �=k

∑
Rk

∫
dτke

2iJjkτk/N cosh[2αkt(γ − iJjk/N )]

cosh(2γ tαk)
Pr(Rk,τk)

⎤
⎦ . (B4)

Defining s = 2iγ + 2J/N , the trick is now to evaluate the
quantity

�(J,t) =
∑
R

∫
dτ P(R,τ )e2iJ τ/N cosh(istα)

cosh(2γ tα)

= e−�rt/2 cosh(ist) +
∞∑

R=1

∫
dτ P(R,τ )e2iJ τ/N .

(B5)

The second equality follows from pulling off theR = 0 term in
the sum, which represents the probability of having no Raman
flip (and so we can set τ = 0 and α = 1 in this term). The
second term represents the probability for any finite number
of Raman flips, and hence we must keep τ arbitrary but can set
α = 0. The integral over τ can be evaluated by using the
identity ∫ t

−t

dτ (t2 − τ 2)μe−ixτ = (2t)μ+1 jμ(xt)μ!

(x)μ
, (B6)

where j is a spherical Bessel function. The remaining sum
over R can be recognized as a generating function for the

spherical Bessel functions (or a derivative thereof). Defining
parameters λ = �r/2 and r = �ud�du, and functions

F (x,y) = sinc(
√

x2 − y), (B7)

G(x,y) = cos(
√

x2 − y) − cos(x)

x
, (B8)

we obtain

�(J,t) = e−λt cos(st) + λt e−λtF (st,rt) + st e−λtG(st,rt)

= e−λt [cos(t
√

s2 − r) + λt sinc(t
√

s2 − r)].

(B9)

We can now write out the exact solution,

〈Ŝx〉 = e−�t

2
Re

∑
j

∏
k �=j

�(Jjk,t). (B10)

Because Eqs. (A6) and (A7) have such a similar structure,
the stochastic averaging of correlation functions is almost
identical, and leads to the similar expressions given in the
main text [Eqs. (10) and (11)].
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