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We utilize accurate experimental data available in the literature to yield bounds on the polarizabilities of the
ground and first-excited states of atomic Yb. For the 6s2 1S0 ground state, we find the polarizability α to be
constrained to 134.4 < α � 144.2 in atomic units while for the 6s6p 3P o

0 excited state, we find 280.1 < α �
289.9. The uncertainty in each of these values is 1.0. These constraints provide a valuable check for ab initio and
semiempirical methods used to compute polarizabilities and other related properties in Yb.
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I. INTRODUCTION

Lifetimes, polarizabilities, and long-range interaction pa-
rameters are intimately connected atomic properties. For a
particular atomic state, these properties may be precisely de-
termined given a complete knowledge of oscillator strengths,
together with associated frequencies, for all transitions con-
necting to that state. (We restrict our attention to transitions
and interactions of the electric-dipole type throughout.) While
such a complete characterization of oscillator strengths eludes
experimental determination, the atomic properties themselves
may be measured directly. Knowledge of one or more
properties (e.g., lifetimes) may be exploited to obtain useful in-
formation on the other related properties (e.g., polarizabilities
or van der Waals coefficients).

In this paper, we employ accurate experimental data
from the literature to set upper and lower bounds on the
polarizabilities of the 6s2 1S0 and 6s6p 3P o

0 states of atomic
Yb for which experimental values are lacking. Three key
parameters we utilize are the 6s6p 1P o

1 radiative lifetime,
known to better than 0.1% from the work of Takasu et al. [1],
the 6s2 1S0–6s2 1S0 van der Waals coefficient C6, known to
better than 2% from the work of Kitagawa et al. [2], and the
6s2 1S0–6s6p 3P o

0 differential polarizability, known to 0.002%
from the work of Sherman et al. [3]. We further supplement
this data with experimental lifetime results compiled in
Refs. [4,5]. At the 1σ confidence level, our results constrain
both polarizabilities to a window of a width of 12 atomic
units. For the 6s2 1S0 polarizability, this is comparable to the
best theoretical results while for the 6s6p 3P o

0 polarizability,
this window is half that of the best theoretical results.

We note the similarity of this work to Ref. [6] wherein
the lifetimes of the first two excited states of atomic Cs
were extracted from the measured ground-state van der Waals
coefficient C6 and the ratio of the two lifetimes. An essential
difference between Ref. [6] and the present work is that
whereas Ref. [6] includes additional input from sophisticated
many-body calculations, our present results are based entirely
on experimental data, free from all but first-principle theoreti-
cal input.

II. PRELIMINARIES

In this section, we present formulas for the ac polarizability
α(ω), the atom-wall-interaction coefficient C3, and the van der

Waals coefficient C6. The expressions here assume atoms in
the ground state with atomic units being used throughout.

The ac polarizability α(ω) describes the atomic response to
a harmonic electric field oscillating at an (angular) frequency
ω. It may be written as

α(ω) =
∑

i

fi

ω2
i − ω2

, (1)

where the summation is over all transitions from the ground
state with integration over continuum states being implicit.
Here, fi and ωi represent the oscillator strength and frequency
associated with the ith transition, respectively (fi,ωi > 0). The
static polarizability, which gives the response to a static electric
field, is obtained by evaluating the ac polarizability in the
zero-frequency limit α ≡ α(0). The term polarizability when
given without specification will imply the static polarizability.

The atom-wall-interaction constant C3 describes the inter-
action of an atom with a perfectly conductive surface. C3 may
be concisely expressed in terms of the ac polarizability as [7]

C3 = 1

4π

∫ ∞

0
α(iω)dω.

Note that α(iω) is real; inclusion of the imaginary factor i in
the argument merely effects a change of sign − → + in the
denominator of expression (1) for the ac polarizability. With
Eq. (1), C3 may be written in terms of contributions from
individual transitions

C3 = 1

8

∑
i

fi

ωi

,

where the integration over ω has been performed analytically.
The van der Waals coefficient C6, which describes the long-

range interaction between two atoms, may also be expressed
in terms of the ac polarizability [7]

C6 = 3

π

∫ ∞

0
|α(iω)|2dω.

Using Eq. (1) and performing the integration over ω analyti-
cally, we arrive at the expression

C6 = 3

2

∑
ij

fifj

ωiωj (ωi + ωj )
.

Note that the denominator here prohibits factorization of the
summations over the indices i and j .
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Another useful property is the summation over all oscillator
strengths

∑
i fi . In the nonrelativistic limit, the well-known

Thomas-Reiche-Kuhn (TRK) sum rule asserts that this sum-
mation is equivalent to the total number of atomic electrons
N , i.e.,

N =
∑

i

fi .

Relativistic effects, however, lead to a departure from this
simple interpretation; these effects will be discussed more
below.

The remainder of this section is dedicated to introducing
notations and conventions to be used in the following sections.
We start with the definition αi ≡ fi/ω

2
i , where αi represents

a partial contribution to the static polarizability from the ith
transition,

α =
∑

i

αi .

It should be noted that these contributions are positive, i.e.,
αi > 0 for all i. Below, expressions for C3, C6, and N will be
written in terms of αi in favor of oscillator strengths fi .

The summations over the indices i and j in the above equa-
tions run over all allowed transitions. We find it advantageous
to partition the spectrum into a subset comprised of select
lower-lying (“main”) transitions and another subset containing
all remaining transitions. We use the convention of reserving
indices a and b for the main transitions and indices r and s for
the remaining transitions. With this convention, the properties
α, C3, and N are partitioned into two terms each:

α =
∑

a

αa +
∑

r

αr ,

C3 = 1

8

∑
a

αaωa + 1

8

∑
r

αrωr,

N =
∑

a

αaω
2
a +

∑
r

αrω
2
r .

We refer to the respective terms on each line as the “main” and
“tail” terms, i.e.,

α = αmain + αtail,

C3 = Cmain
3 + C tail

3 , (2)

N = Nmain + N tail.

The C6 coefficient, on the other hand, decomposes into three
terms:

C6 = 3

2

∑
ab

αaαb

(
ωaωb

ωa + ωb

)
+ 3

2

∑
rs

αrαs

(
ωrωs

ωr + ωs

)

+ 3
∑
ar

αaαr

(
ωaωr

ωa + ωr

)
,

which we refer to as the “main,” “tail,” and “cross” terms,
respectively, i.e.,

C6 = Cmain
6 + C tail

6 + Ccross
6 . (3)

Finally, we introduce the frequency ω0, which we set
equal to the smallest transition frequency outside of the main
transitions.

III. LIMITS ON THE POLARIZABILITY

The partitioning of the spectrum is motivated by the
fact that transition frequencies and oscillator strengths for
several low-lying transitions are known or can be determined
sufficiently well from experimental data. With these transitions
composing the main subset, all main terms in Eqs. (2) and
(3) can be determined by directly adding the contributions
from these transitions. Limited experimental information for
the remaining transitions prohibits such direct evaluation of
the tail and cross terms. However, given a C6 coefficient and
a total number of electrons N , we may set bounds on these
residual terms. In particular, below we derive upper and lower
bounds on αtail in terms of C6, N , and the various main terms.
Constraints on α itself are then simply obtained by adding
αmain to each of these bounds.

A. Upper bound on α

To derive an upper bound on α, we begin by considering
the factor ωiωj/(ωi + ωj ), which appears in the expression for
the C6 coefficient. By taking partial derivatives, we find that
this factor increases monotonically with respect to both ωi and
ωj . With this insight, we establish the following inequalities:

ωrωs

ωr + ωs

� ω0

2
,

ωaωr

ωa + ωr

� ωaω0

ωa + ω0
.

These inequalities may be used to give lower bounds on C tail
6

and Ccross
6 in terms of αtail:

C tail
6 � 3

2

∑
rs

αrαs

(ω0

2

)
= 3

4
ω0(αtail)2,

Ccross
6 � 3

∑
ar

αaαr

(
ωaω0

ωa + ω0

)
= 3

2
ω0ξαmainαtail,

where we have introduced the factor ξ according to the relation

ξαmain =
∑

a

αa

2ωa

ωa + ω0
.

ξ is positive; furthermore, if ω0 is larger than all main-
transition frequencies, it follows that ξ is necessarily less than
unity as well.

The bounds on C tail
6 and Ccross

6 give a corresponding bound
on C6 itself,

C6 � Cmain
6 + 3

4ω0(αtail)2 + 3
2ω0ξαmainαtail.

Noting that all factors here are necessarily non-negative, we
can rearrange this inequality to yield an upper bound on αtail,

αtail � −ξαmain +
√

(ξαmain)2 + 4

3

(
C6 − Cmain

6

)
ω0

.

By simply adding αmain, we arrive at the result

α � αmain − ξαmain +
√

(ξαmain)2 + 4

3

(
C6 − Cmain

6

)
ω0

. (4)

In the limit where no transitions are included within the main
subset, we find α �

√
(4/3)C6/ω0 with ω0 being the first

allowed transition frequency.
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B. Lower bound on α

To derive a lower bound on α, we again start with the factor
ωiωj/(ωi + ωj ), this time utilizing the two inequalities

ωrωs

ωr + ωs

� 1

4
(ωr + ωs),

ωaωr

ωa + ωr

< ωa. (5)

The first inequality follows from 4ωrωs � 4ωrωs + (ωr −
ωs)2 = (ωr + ωs)2 while the second is obtained by taking the
limit ωr → ∞. These inequalities may be used to set upper
bounds on C tail

6 and Ccross
6 in terms of αtail,

C tail
6 � 3

2

∑
rs

αrαs

1

4
(ωr + ωs) = 6C tail

3 αtail,

Ccross
6 � 3

∑
ar

αaαrωa = 24Cmain
3 αtail.

The equality for Ccross
6 here only holds if either all or none of

the transitions are included in the main subset. Together these
inequalities give an upper bound on C6 itself,

C6 � Cmain
6 + 6C tail

3 αtail + 24Cmain
3 αtail. (6)

In the absence of direct experimental information for C tail
3 ,

expression (6) is of limited utility in its present form. However,
with inspiration from elementary probability and statistics,
we can find a useful limit on C tail

3 . Namely, for pr � 0 and∑
r pr = 1, the following relations hold:∑

r

pr (xr − 〈x〉)2 = 〈x2〉 − 〈x〉2 � 0,

where 〈xn〉 ≡ ∑
r prx

n
r . In the language of probability and

statistics, this merely states that variance is non-negative. By
making the associations pr → αr/α

tail and xr → ωr , we arrive
at the inequality

C tail
3 � 1

8

√
N tailαtail.

Taking this result together with Eq. (6), we find

C6 � Cmain
6 + 3

4

√
N − Nmain(αtail)3/2 + 24Cmain

3 αtail, (7)

where we have further used N tail = N − Nmain.
Our aim now is to rearrange inequality (7) to obtain bounds

on αtail. To this end, we note that in the limit of equality,
expression (7) becomes a cubic equation for

√
αtail. A general

cubic equation ax3 + bx2 + cx + d = 0 has three solutions
for x; for the special case of a,b � 0, c = 0, and d � 0, such
as in the present case, only one solution is a non-negative real
number. This solution corresponds to a lower bound on

√
αtail.

Squaring this solution to the cubic equation and adding αmain,
we find a lower bound on α:

α � αmain + 1

24

(
C6 − Cmain

6

)
Cmain

3

× g

[
214

9

(
Cmain

3

)3(
C6 − Cmain

6

)
(N − Nmain)

]
, (8)

where the function g(x) is defined for x > 0 by

g(x) = 3

2
x

{
2 cosh

[
1

3
cosh−1

(
1 − x

x

)]
− 1

}2

.

The function g(x) increases monotonically with x, approach-
ing zero [specifically, g(x) → 3(x/2)1/3] in the limit x → 0
and unity in the limit x → ∞. An equivalent function may be
obtained by simultaneously replacing the hyperbolic cosine
function and its inverse with their trigonometric counterparts
(i.e., cosh → cos, cosh−1 → cos−1) [8]. In the limit of no
transitions being included in the main subset, we find α �
[(4/3)C6/

√
N ]2/3.

IV. EXPERIMENTAL BOUNDS ON THE 6s2 1S0 AND
6s6 p 3P o

0 POLARIZABILITIES IN YB

Inequalities (4) and (8) represent the principle results of
the previous section. Here, we use these inequalities together
with experimental data to set constraints on the 6s2 1S0 ground-
state polarizability of Yb. Moreover, we further constrain the
polarizability of the 6s6p 3P o

0 excited state by employing the
result of a recent high-accuracy measurement of the 6s2 1S0–
6s6p 3P o

0 differential polarizability. In the following section,
these constraints are compared with theoretical values of the
6s2 1S0 and 6s6p 3P o

0 polarizabilities given in the literature.

A. Bounds on the 6s2 1S0 polarizability

In Table I, we compile data for the lowest transitions
from the ground state in Yb. Transition frequencies are taken
from Ref. [9] while partial contributions αi are inferred
from experimental lifetime data given in Refs. [1,4,5]. We
ascribe uncertainties to αi based on uncertainties quoted in
the relevant references. The 6s2 1S0 → 6s6p 1P o

1 transition
gives the dominant contribution to the polarizability (∼70%).
With an accurate value for the 6s6p 1P o

1 lifetime known from
photoassociation spectroscopy [1], this dominant contribution
is determined to within 0.1%. The 6s2 1S0 → 5d6s2 ( 7

2 , 5
2 )o1

transition, involving an excitation from the 4f electronic
shell, gives the next-largest contribution to the polarizability
(∼15%). We have determined this contribution by taking the
weighted mean of five lifetime results compiled in Ref. [4].
Rather than using the conventional uncertainty associated
with the weighted mean (0.7 in this case), we adopt a more

TABLE I. Transition frequencies ωi and contributions to the
polarizability αi for the ground state of Yb. The lowest six transitions
from the ground state are displayed with i encompassing all the
degenerate magnetic states of the upper level. Configurations given
with three electrons imply excitation of an electron from the
otherwise-filled 4f shell. All values are in atomic units.

i(6s2 1S0 →) ωi αi

6s6p 3P o
1 0.081978 2.4 ± 0.1a,b

6s6p 1P o
1 0.114219 100.4 ± 0.1c

5d6s2 ( 7
2 , 5

2 )o1 0.131482 21.1 ± 1.2a

5d6s2 o
1 0.170473

6s7p 3P o
1 0.173934

⎫⎬
⎭ 1.6 ± 0.8a,b

5d6s2 3Do
1 0.175065

aReference [4].
bReference [5].
cReference [1].
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conservative value of 1.2, which is commensurate with the
smallest uncertainty of the five lifetime results.

The last three transitions in Table I have similar frequen-
cies. The proximity of these three states to one another is
cause for some special consideration. For example, based
on configuration and spin multiplicity, one may suspect the
first of these states to decay almost exclusively to the ground
6s2 1S0 state with the second decaying almost exclusively to the
5d6s 3D1 and 6s7s 3S1 states. The validity of the configuration
and spin quantum numbers, however, may break down due to
strong Coulomb mixing between these three states. While the
near-degeneracy brings this additional complication, it also
allows for a counterbalancing simplification by permitting
us to consider the three states simultaneously. Based on
experimental lifetimes from Refs. [4,5], we take the cumulative
contribution to the polarizability from these states to be 1.6 ±
0.8; the 50% uncertainty here is a conservative estimate of
the potential effects of mixing between these states. We take
a single transition frequency ωi to be representative of these
transitions; our results below are insensitive to the particular
choice of ωi when taken within the window of the three
transition frequencies.

The next transition from the ground state, beyond those
shown in Table I, is the 6s2 1S0 → 6s7p 1P o

1 transition at ωi =
0.184 823. Experimental lifetime results from Ref. [4] indicate
that this transition could provide a contribution as large as ∼9
to the polarizability. This would be the case if the 6s7p 1P o

1
state decayed exclusively to the ground state (an assumption
which appears to be made in Ref. [10]). However, electric-
dipole coupling to the 5d6s 1D2 and 6s7s 1S0 states may also be
strong. Lacking essential information on the branching ratios
of the 6s7p 1P o

1 decay, we opt not to designate a value αi for
this transition. Consequently, we take the transitions in Table I
to compose our main subset and assign to ω0 the value of the
6s2 1S0 → 6s7p 1P o

1 transition frequency.
With αi given for all transitions in the main subset (Table I),

the factors αmain, ξαmain, Cmain
3 , Cmain

6 , and Nmain may be
determined directly. To obtain bounds on α from inequalities
(4) and (8), we further require the van der Waals coefficient
C6 and the total number of electrons N . Kitagawa et al. [2]
have probed the long-range interaction between ground-state
Yb atoms via photoassociation spectroscopy; in their work,
the authors determined the van der Waals coefficient to be

C6 = 1932 ± 30. (9)

Taking the contributions αi from Table I together with this C6

coefficient and N = 70, we obtain the following bounds on
the ground-state polarizability of Yb:

134.4 ± 1.0 < α � 144.2 ± 1.0.

The uncertainties given here were obtained by performing
Monte Carlo calculations of the bounds [right-hand sides of
inequalities (4) and (8)], starting with normally distributed
values of αi from Table I and C6 from Eq. (9). We note that
the uncertainty in each bound (1.0) is below the uncertainty of
αmain itself (see Table I); this is due to covariance between the
main terms that appear in inequalities (4) and (8).

We recall that the number of electrons N , which we used
here to obtain a lower bound on α, appeared in our expressions
by invoking the TRK-sum rule. The TRK-sum rule, however,

is only strictly valid in the nonrelativistic limit, and appreciable
deviations might be suspected for a heavy atom such as Yb.
The lowest-order relativistic corrections scale as (Z/c)2 with
Z being the nuclear charge (Z = N for a neutral atom) and
c ≈ 137 being the speed of light. We find that making the
substitution N → N

[
1 ± (Z/c)2

] = 70 ± 18 in expression
(8) only shifts the lower bound by ∓0.3, this being well within
our uncertainty. Moreover, dedicated calculations have found
the relativistic corrections to the TRK-sum rule to be only ≈1%
for Yb [11], suggesting that the above substitution grossly
overestimates these effects. Therefore, we conclude that it is
acceptable to neglect relativistic corrections to the TRK-sum
rule in the present case.

B. Bounds on the 6s6 p 3P o
0 polarizability

The atomic structure of Yb is well-suited for a frequency
standard based on neutral atoms confined in an optical lattice
trap [12,13]. Over the course of the last few years, Yb lattice
clocks have demonstrated performance on par with the best
neutral-atom and single-ion frequency standards while still
holding potential for further improvement [14,15]. One of
the largest systematic shifts to the clock frequency is due to
thermal radiation from the room-temperature environment im-
pinging upon the atomic sample [16]. In an effort to reduce the
uncertainty associated with this thermal shift, Sherman et al.
[3] recently measured the static Stark shift to the 6s2 1S0 →
6s6p 3P o

0 optical clock frequency to high accuracy. Their
results were reported in terms of the differential polarizability:

α(6s6p 3P o
0 ) − α(6s2 1S0) = 145.726 ± 0.003.

We use this result, together with our results above for
the ground-state polarizability, to set constraints on the
polarizability of the 6s6p 3P o

0 excited state:

280.1 ± 1.0 < α � 289.9 ± 1.0.

The excited-state polarizability is about twice as large as the
ground-state polarizability; as a consequence, the constraint
on the excited-state polarizability is fractionally about a factor
of 2 more narrow than the constraint on the ground-state
polarizability.

V. COMPARISON WITH THEORETICAL VALUES
FROM THE LITERATURE

In Fig. 1, we display results of ab initio and semiempirical
calculations taken from the literature for the 6s2 1S0 and
6s6p 3P o

0 polarizabilities. Along with these values, we further
display the present constraints derived from experimental data.

For the ground state, we find that several of the theoretical
values lie within our constraints. In particular, with the
exception of Ref. [16], all results with explicit error bars are
found to agree very well with our constraints. Dzuba and
Derevianko [7] identified an oversight in the semiempirical
method of Ref. [16] that accounts for the discrepancy with
this result. At the 1σ confidence level, we see that our present
results and the most accurate theoretical results of Refs. [7,24]
constrain the polarizability to a similar window, having a width
of about 12.
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a Ref. [17]
b Ref. [18]
c Ref. [19]
d Ref. [20]

e Ref. [21]
f Ref. [22]
g Ref. [16]
h Ref. [23]

i Ref. [10]
j Ref. [24]
k Ref. [25]
l Ref. [7]

mRef. [26]
n Ref. [27]
o Ref. [28]

FIG. 1. (Color online) Theoretical values from the literature for
the polarizabilities of the 6s2 1S0 (upper panel) and 6s6p 3P o

0 (lower
panel) states of Yb together with the present constraints derived from
experimental data. Theoretical values are denoted with circle markers
along with error bars where available. The vertical bands indicate the
present constraints with the left band extending 1σ below the lower
bound and the right band extending 1σ above the upper bound.

For the excited state, we find that the theoretical results with
explicit error bars agree reasonably well with our constraints.
Specifically, values from Refs. [16,20,26] are seen to lie about
1σ below our lower bound while the value from Ref. [7]
lies about 1σ above our upper bound. The only other result,
having no explicit error bar, also lies above our upper bound.
At the 1σ confidence level, we see that our results constrain
the polarizability to a tighter window—about a factor of 2
narrower—than the best theoretical results.

It is not the goal of the present paper to provide criticism
of the theoretical methods used in Refs. [7,10,16–28]. Never-
theless, as a general comment, it appears that our constraints
give a certain degree of validation for several of these methods.
We anticipate that our results will serve as a valuable check
for ab initio and semiempirical methods used in future works
to calculate polarizabilities as well as other related properties
of Yb (e.g., C3 and C6 coefficients, magic wavelengths, and
dipole matrix elements). Figure 1 illustrates that our present
constraints are relevant for this purpose.

VI. COMMENTS ON THE SPECTRAL
DISTRIBUTION OF αtail

The gap between our upper and lower bounds demonstrates
our ignorance of the spectral distribution of αtail across the
frequencies ωr � ω0. For example, the equality of Eq. (4),
which gives the upper bound on the polarizability, is only
satisfied if the entirety of αtail is accumulated from transi-
tions with a frequency precisely ω0 and no larger. With an
appropriate model for the distribution of αtail (or, equivalently,
the distribution of oscillator strengths), we could arrive at a
central value for the polarizability lying somewhere between
our present constraints. We have chosen not to pursue such
a program, stressing that our present results are derived
from experimental data available in the literature and are
independent of such theoretical modeling.

Unlike the upper bound of Eq. (4), the lower bound of
Eq. (8) does not correspond to a precise distribution of αtail.
From numerical calculations, we found that, with C6, N ,
and the main terms fixed, αtail is minimized by a distribution
peaked sharply about a frequency ωr ≈ 2.5. This realization
motivated the choice of inequalities in Eq. (5). The first is near
equality when |ωr − ωs | � (ωr + ωs) while the second is near
equality for ωa � ωr . Therefore, with these inequalities, our
analytical lower bound of Eq. (8) has a close correspondence
to this minimal distribution. While it is physically unlikely that
αtail is accumulated entirely at frequency ωr ≈ 2.5, we again
emphasize that we do not speculate on the actual spectral
distribution of αtail.

VII. EXTENSION TO NONSTATIC POLARIZABILITIES

While the primary focus of this work is to obtain constraints
on the static polarizability α ≡ α(0), the results above can
further be extended to yield constraints on the ac polarizability
α(ω) evaluated at other frequencies ω �= 0. To illustrate this,
we consider the ac polarizability evaluated at the “magic”
lattice frequency ω∗, which balances the ac polarizabilities
of the 6s2 1S0 and 6s6p 3P o

0 clock states [12]. Dedicated
measurements have determined the magic frequency to be
ω∗ = 0.06000 (in atomic units) [15,29]. Defining β ≡ α(ω∗),
it follows from Eq. (1) that contributions to β satisfy

βi = αi

ω2
i

ω2
i − ω∗2

.

The main term βmain ≡ ∑
a βa can be computed directly from

the values given in Table I while the tail term β tail ≡ ∑
r βr is
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necessarily limited to the range

αtail < β tail � αtail

(
ω2

0

ω2
0 − ω∗2

)
, (10)

where the factor in parentheses evaluates to 1.12. Using
inequality (10) together with inequalities (4) and (8) for
bounds on αtail, we obtain the following constraints on
β = βmain + β tail:

181.1 ± 1.3 < β � 193.2 ± 1.1.

These constraints have been derived specifically for the 6s2 1S0
ground state; however, we note that they are equally applicable
for the 6s6p 3P o

0 excited state, following from the definition of
the magic frequency, i.e., β(6s6p 3P o

0 ) = β(6s2 1S0). Knowl-
edge of β is useful as it can be used to directly relate lattice
intensity to trap depth in the optical lattice clock [29].

VIII. CONCLUSION

We have utilized experimental data available in the litera-
ture to yield bounds on the polarizabilities of the 6s2 1S0 and
6s6p 3P o

0 states of Yb. Key experimental parameters employed

were the 6s6p 1P o
1 radiative lifetime from Takasu et al. [1], the

6s2 1S0–6s2 1S0 van der Waals coefficient C6 from Kitagawa
et al. [2], and the 6s2 1S0–6s6p 3P o

0 differential polarizability
from Sherman et al. [3]. For the 6s2 1S0 state, our results
constrain the polarizability to a window comparable to that of
the best theoretical results (at the 1σ confidence level) while
for the 6s6p 3P o

0 state, our results constrain the polarizability
to a window half the width of the best theoretical results.
We anticipate that our results will serve as a valuable check
for ab initio and semiempirical methods aimed at calculating
polarizabilities and other related properties in Yb.

Note added. Recently, we became aware of new ab initio
calculations of the polarizabilities by Safronova et al. [30].
Their results, α(6s2 1S0) = 141 ± 3 and α(6s6p 3P o

0 ) = 293 ±
10, are in agreement with our present constraints.
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