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The presence of long-range quantum spin correlations underlies a
variety of physical phenomena in condensed-matter systems,
potentially including high-temperature superconductivity1,2.
However, many properties of exotic, strongly correlated spin
systems, such as spin liquids, have proved difficult to study, in part
because calculations involving N-body entanglement become
intractable for as few as N < 30 particles3. Feynman predicted that
a quantum simulator—a special-purpose ‘analogue’ processor
built using quantum bits (qubits)—would be inherently suited to
solving such problems4,5. In the context of quantum magnetism, a
number of experiments have demonstrated the feasibility of this
approach6–14, but simulations allowing controlled, tunable inter-
actions between spins localized on two- or three-dimensional
lattices of more than a few tens of qubits have yet to be demon-
strated, in part because of the technical challenge of realizing
large-scale qubit arrays. Here we demonstrate a variable-range
Ising-type spin–spin interaction, Ji,j, on a naturally occurring,
two-dimensional triangular crystal lattice of hundreds of spin-half
particles (beryllium ions stored in a Penning trap). This is a com-
putationally relevant scale more than an order of magnitude larger
than previous experiments. We show that a spin-dependent optical
dipole force can produce an antiferromagnetic interaction
J i,j!d{a

i,j , where 0 # a # 3 and di,j is the distance between spin
pairs. These power laws correspond physically to infinite-range
(a 5 0), Coulomb–like (a 5 1), monopole–dipole (a 5 2) and
dipole–dipole (a 5 3) couplings. Experimentally, we demon-
strate excellent agreement with a theory for 0.05= a= 1.4. This
demonstration, coupled with the high spin count, excellent
quantum control and low technical complexity of the Penning trap,
brings within reach the simulation of otherwise computationally
intractable problems in quantum magnetism.

A challenge in condensed-matter physics is the fact that many
quantum magnetic interactions cannot currently be modelled in a
meaningful way. A canonical example is the spin liquid, an exotic state
postulated1 to arise in a collection of spin-1/2 particles residing on a
triangular lattice and coupled to each other by a nearest-neighbour
antiferromagnetic Heisenberg interaction. The spin liquid’s ground
state is highly degenerate, owing to spin frustration, and is expected
to have unusual behaviours including phase transitions at zero tem-
perature driven by quantum fluctuations15. However, despite recent
advances16,17 a detailed understanding of large-scale frustration in
solids remains elusive2,18–20.

Atomic physicists have recently provided a bottom-up approach to
the problem by engineering the relevant spin interactions in quantum
simulators5,21,22. The necessary experimental capabilities—laser cool-
ing, deterministic spin localization, precise spin-state quantum con-
trol, high-fidelity read-out and engineered spin–spin coupling—were
first demonstrated in the context of atomic clocks (see, for example,
ref. 23). In the domain of quantum magnetism, this tool set permits

control of parameters commonly viewed as immutable in natural
solids, for example lattice spacing and geometry, and spin–spin inter-
action strength and range.

Initial simulations of quantum Ising and Heisenberg interactions
with localized spins were done with neutral atoms in optical lattices6,11,
atomic ions in Paul traps9,10,13,14 and photons12. This work involved
simulations readily calculable on a classical computer: interactions
between N < 10 qubits localized in one-dimensional (1D) chains.
The move to quantum magnetic interactions on two-dimensional
(2D) lattices and between larger, computationally relevant numbers
of particles is the crucial next step but at present requires more
technological development24.

In our Penning trap apparatus, laser-cooled 9Be1 ions naturally
form a stable 2D Coulomb crystal on a triangular lattice with ,300
spins (Fig. 1). Each ion is a spin-1/2 system (qubit) over which we exert
high-fidelity quantum control25. In this paper, we demonstrate the use
of a spin-dependent optical dipole force (ODF) to engineer a continuously
tunable Ising-type spin–spin coupling Ji,j!d{a

i,j . This capability, in
tandem with a modified measurement routine (for example by more
sophisticated processing of images such as that in Fig. 1), is a key
advance towards useful simulations of quantum magnetism.

A Penning trap confines ions in a static quadrupolar electric potential
(Methods) and a strong, homogeneous magnetic field B 5 B0ẑ
(B0 5 4.46 T). Axial trapping (along z) is due to the electric field. Ion
rotation at frequency vr (about z) produces a radial restoring potential
due to the velocity-dependent Lorentz force (qv|B, where q and v are
respectively the ion’s charge and velocity). Tuning the ratio of the axial
to radial confinement allows controlled formation of a planar geometry
and, after Doppler laser cooling, the formation of a 2D Coulomb crystal
on a triangular lattice26 (Methods). We routinely generate crystals with
N ions (100=N= 350), where the valence-electron spin state of each
ion serves as a qubit25. Following techniques developed in linear (1D)
Paul traps27, spins confined in the same trapping potential are coupled
through their shared motional degrees of freedom.

Using well-controlled external fields, we engineer spin interactions
of the form

ĤB~
X

i
Bm?ŝi

ĤI~
1
N

X
ivj

Ji,jŝ
z
i ŝz

j

ð1Þ

where ŝi~(ŝx
i ,ŝ

y
i ,ŝz

i ) is the vector of Pauli matrices for ion i. We label
the qubit spin states j"æ ; jms 5 11/2æ and j#æ ; jms 5 21/2æ, where
ms is the spin’s projection along the quantizing field B0ẑ, such that
ŝz

i :ij i~ :ij i and ŝz
i ;ij i~ ;ij i. The Hamiltonian ĤB encodes an inter-

action due to an effective magnetic field, Bm (generated by externally
applied microwaves at 124 GHz), that couples equally to all spins and
permits global rotations (Fig. 1). The interaction ĤI describes a general
coupling, Ji,j, between spins i and j a distance di,j apart28,29. For Ji,j . 0
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the coupling is antiferromagnetic and for Ji,j , 0 the coupling is
ferromagnetic.

We implement ĤI using a spatially uniform, spin-dependent ODF
generated by a pair of off-resonance laser beams with difference fre-
quency mR (Fig. 1 and Supplementary Information). The ODF couples
each ion’s spin to one or more of the N transverse (along z) motional
modes of the Coulomb crystal by forcing coherent displacements of
the ions that in turn modify the ions’ Coulomb potential energy
through the interaction

ĤODF~{
XN

i

Fz(t)ẑiŝ
z
i

Here Fz(t) 5 F0cos(mRt) is the ODF; ẑi~
PN

m~1 bi,m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=2Mvm

p
(âme{ivmtzâ{meivmt) is the axial position operator for ion i; bi,m are
elements of the N transverse phonon eigenfunctions, bm, at frequencies

vm, normalized as
PN

m~1 bi,mj j2~
PN

i~1 bi,mj j2~1 (refs 28, 29); M is
the ion mass; and B is Planck’s constant divided by 2p. The modes
include the centre-of-mass (COM) mode (v1) as well as an array of
modes of higher spatial frequencies that may be derived from atomistic
calculations (Fig. 2a) and confirmed by experimental measurement30.

For small, coherent displacements, where residual spin–motion
entanglement can be neglected29 (Methods), ĤODF is equivalent to
ĤI in equation (1): spins i and j are coupled in proportion to their spin
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Figure 1 | The Penning trap confines hundreds of spin-1/2 qubits on a 2D
triangular lattice. Each qubit is the valence-electron spin of a 9Be1 ion. Bottom:
a Penning trap confines ions using a combination of static electric and magnetic
fields. The trap parameters are configured such that laser-cooled ions form a
triangular 2D crystal. A general spin–spin interaction, ĤI, is generated by a spin-
dependent excitation of the transverse (along z) motional modes of the ion
crystal. This coupling is implemented using an optical dipole force (ODF)
produced by a pair of off-resonance laser beams (left side) with angular
separation hR and difference frequency mR. Microwaves at 124 GHz permit
global spin rotations ĤB. Top: a representative top-view resonance fluorescence
image showing the centre region of an ion crystal captured in the ions’ rest frame;
in the laboratory frame, the ions rotate at vr 5 2p3 43.8 kHz (ref. 26).
Fluorescence is an indication of the qubit spin state ( |"æ, bright; |#æ, dark); here,
the ions are in the state |"æ. The lattice constant is d0 < 20mm.
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Figure 2 | Spin–spin interactions are mediated by the ion crystal’s
transverse motional degrees of freedom. a, For a 2D crystal with N 5 217 ions
and vr 5 2p3 45.6 kHz, we calculate the eigenfunctions, bm, and
eigenfrequencies, vm, for the N transverse motional modes (Supplementary
Information). Plotted here are vm and bm for the 14 highest-frequency modes.
Relative mode amplitude is indicated by colour. The COM motion is the highest in
frequency (v1 < 2p3 795 kHz); b1 has no spatial variation. The lowest-frequency
mode is v217 < 2p3 200 kHz; b217 has spatial variation at the lattice-spacing
length scale, d0 < 20mm. b, Using equation (2), we calculate Ji,j explicitly for
N 5 217 spins and plot it as a function of spin–spin separation, di,j. For
mR 2 v1 , 2p3 1 kHz, ĤODF principally excites COM motion in which all ions
equally participate: the spin–spin interaction is spatially uniform. As the detuning
is increased, modes of higher spatial frequency participate in the interaction and Ji,j

develops a finite interaction length. We find the scaling of Ji,j with di,j follows the
power law Ji,j / d{a

i,j . For mR 2 v1? 2p3 500 kHz, all transverse modes
participate and the spin–spin coupling power-law exponent, a, approaches 3. The
solid lines are power-law fits to the theory points. For comparison with other
experiments, the nearest-neighbour coupling (d0 5 20mm) is marked by the
dashed line. c–e, The power-law nature of Ji,j is qualitatively illustrated for N 5 19
(for larger N, diagrams of similar size are illegible). Spins (nodes) are joined by lines
coloured in proportion to their coupling strength for various values of a. f, For
context, the graph for a 1D nearest-neighbour Ising interaction, a well-known
model in quantum field theory, is plotted.
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states, ŝz
i and ŝz

j , and by their mutual participation in each motional
mode m. The coupling coefficient is given by29

Ji,j~
F2

0 N
2BM

XN

m~1

bi,mbj,m

m2
R{v2

m

ð2Þ

These pairwise interaction coefficients can be calculated explicitly by use
of the ion motional modes. We find that the range of interaction can be
modified by detuning away from the COM mode as shown in Fig. 2b. In
the limit mR 2 v1? 2p3 500 kHz, all modes participate equally in the
interaction and Ji,j!d{3

i,j , as discussed in ref. 28. At intermediate detun-
ing, we find a power-law scaling of the interaction range, Ji,j!d{a

i,j ,
where a can be tuned within the range 0 # a # 3. That is, by adjusting
the single experimental parameter, mR, we can mimic a continuum of
physical couplings including important special cases: infinite range
(a 5 0); monopole–monopole, or Coulomb-like (a 5 1); monopole–
dipole (a 5 2); and dipole–dipole (a 5 3). The choice of a 5 0 results
in the ‘̂J2

z interaction’, which gives rise to spin squeezing and is used in
quantum logic gates27 (Supplementary Information). In addition, tuning
mR also gives access to both antiferromagnetic (mR . v1) and ferromag-
netic (v2= mR , v1) couplings10,13.

Experimentally, we demonstrate a tunable-range Ising interaction
by observing a global spin precession under the application of ĤI

(Fig. 3). We compare experimental data with the mean-field prediction
that the influence of ĤI on spin j can be modelled as a magnetic field
�Bj~(2=N)

PN
i,i=j Ji,jhŝz

i i in the z direction due to the remaining N 2 1
spins (Supplementary Information; angle brackets denote expectation
value). For a general qubit superposition state, �Bj gives rise to spin
precession about z in excess of that expected to result from simple
Larmor precession (Fig. 3b). The experiment sequence shown in
Fig. 3a measures this excess precession, averaged over all spins in the
crystal. At the outset, each spin is prepared in state j"æ and then rotated
about the x axis by angle h1. The interaction ĤI is applied during the
arms of a spin echo, each of duration tarm; precession proportional to
Æŝz

i æ coherently adds throughout the interaction duration, 2tarm. The
final p/2-pulse maps precession out of the initial plane (y–z) into
excursions along z (above or below the equatorial plane of the Bloch
sphere) that are resolved by projective spin measurement along z.

We detect global, state-dependent fluorescence (j"æ, bright; j#æ,
dark) as a function of h1 using a photomultiplier tube. This measure-
ment permits a systematic study of the mean-field-induced spin pre-
cession averaged over all particles

1
N

XN

j

�Bj~2
1

N2

XN

j

XN

i,i=j

Ji,j

 !
cos (h1):2�J cos (h1)

The probability of detecting state j"æ at the end of the sequence is

P(j:i)~ 1
2

(1zexp({C?2tarm) sin (h1) sin (2�J cos (h1)?2tarm)) ð3Þ

and a single-parameter fit to experimental data yields �J . Decoherence
due to spontaneous emission is accounted for by C and is determined
by independent measurement of the ODF laser beam intensities, IR

(C / IR; see Supplementary Information).
In Fig. 3c, d, we show representative measurements of excess pre-

cession due to ĤI for different values of spin coupling strength (deter-
mined by Ji,j!I2

R) and interaction duration (2tarm). The excess spin
precession varies periodically with h1 (with period p) and greater inter-
action strengths result in more precession, manifested in our experi-
ment as a larger amplitude modulation of P(j"æ). Our data agree with
equation (3) and allow direct extraction of �J for given experimental
conditions. In Fig. 3e, we plot �J , normalized by I2

R (IR is independently
measured), as a function of the detuning mR 2 v1 (N 5 206 6 10 ions).
Using no free parameters, we find excellent agreement with the value of
�J obtained by averaging over all Ji,j, where the Ji,j were calculated by
including couplings to all N transverse modes (equation (2)).

The mean-field interpretation of our benchmarking measurement
applies only for weak spin–spin correlations. Therefore, in the bench-
marking regime we apply a weak interaction (�J?2tarm=

ffiffiffiffi
N
p

=4; see
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Figure 3 | Benchmarking the 2D Ising interaction. a, Spin-precession
benchmarking sequence for ĤI. The spins are prepared at the outset in |"æ
(a ferromagnetic state). The spin–spin interaction, ĤI, is present when the ODF
laser beams are on. We choose mR 2 v1 5 n ? 2p/tarm so that for small detunings
from the COM mode (v1), the spins are decoupled from the motion by the end of
each periodtarm. b, Evolution of a single spin before the application of the spin echo
p-pulse. c, d, Plots showing spin precession proportional to hŝzi due to ĤI as a
function of initial ‘tipping angle’ h1. The error bars are statistical (s.d., 200
measurements). The plots show typical experimental data (black) and, in c, single-
parameter fits to equation (3). For an antiferromagnetic (AFM) coupling,
tarm 5 250ms, mR 2 v1 5 2p3 4.0 kHz and IR 5 1.4 W cm22, we obtain
�J=I2

R 5 2p3 25 Hz W22 cm4 (yellow fit). Longer drive periods and higher laser
intensity, IR, yield a larger precession. For tarm 5 350ms, mR 2 v1 5 2p3 2.9 kHz
and IR 5 1.9 W cm22, we obtain�J=I2

R 5 2p3 55 Hz W22 cm4 (red fit). The data in
this plot is typical of the experiments conducted for benchmarking. For a much
stronger interaction (d), equation (3) cannot be used to obtain�J because the mean-
field assumption is no longer valid (Supplementary Information). Also, here we
used a small negative detuning (v2=mR , v1), which gives a long-range
ferromagnetic (FM) interaction. For these experiments, we set
vr 5 2p3 45.6 kHz. e, Benchmarking results for an ion crystal with N 5 206 6 10
ions. Each point is generated by measuring�J as in c) and measuring the laser beam
intensity, IR, at the ions. The error bars are dominated by uncertainty in IR

(Supplementary Information). The solid line (red) is the prediction of mean-field
theory that accounts for couplings to all N transverse modes; there are no free
parameters. The line’s breadth reflects experimental uncertainty in the angle
hR 5 4.8 6 0.25u. The mean-field prediction for the average value of the power-law
exponent, a, is drawn in green (right axis, linear scale).
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Supplementary Information). In a quantum simulation, the same inter-
action is applied at greater power, producing quantum spin–spin cor-
relations. In the present configuration of our apparatus, spontaneous
emission due to the ODF laser beams (parameterized by C in equation
(3)) is the dominant source of decoherence. With modest laser powers
of 4 mW per laser beam and a detuning of mR 2 v1 5 2p3 2 kHz, we
obtain �J<2p|0:5 kHz and C=�J<0:06. The expected spin squeezing
(̂J2

z ) due to this interaction is 5 dB (limited by spontaneous emission).
The ratio C=�J can be reduced by a factor of 50 by increasing the ODF
laser beams’ angular separation, hR, to 35u (Fig. 1), which is a likely
prerequisite for access to the shortest-range, dipole–dipole, coupling
regime (a R 3). At present, geometric constraints impose the limit
hRv50; we plan upgrades to our apparatus to permit hR 5 35u. Thus
far we operated with ODF magnitudes equal but opposite for j"æ and
j#æ; relaxation of this constraint can further reduce C=�J .

Our work establishes the suitability of Penning traps for simulation
of quantum magnetism in a regime inaccessible to classical computa-
tion. Our approach is based on naturally occurring 2D Coulomb
(Wigner) crystals with hundreds of ion qubits, a novel experimental
system that does not require demanding trap-engineering efforts.
Experimentally, we used an ODF to engineer a tunable-range spin–
spin interaction and benchmarked the interaction strength. Excellent
agreement was obtained with the predictions of mean-field theory and
atomistic calculations that predict a power-law antiferromagnetic spin
coupling, Ji,j!d{a

i,j , for 0.05 = a = 1.4.
With this work as a foundation, we anticipate a variety of future

investigations. For example, simultaneous application of the non-
commuting interactions ĤB and ĤI is expected to give rise to quantum
phase transitions; ĤI may be antiferromagnetic (mR . v1) or ferro-
magnetic (v2= mR , v1). Geometric modifications to our apparatus
will permit access to larger values of hR and antiferromagnetic dipole–
dipole-type couplings (a R 3). Improved image processing software
will permit direct measurement of spin–spin correlation functions
using our existing single-spin-resolving imaging system (Fig. 1).

METHODS SUMMARY
In a frame rotating at frequency vr, the trap potential is

qQ(r, z)~
1
2

Mv2
1(z2zbr2)

where b~vrv
{2
1 (Vc{vr){1=2. The 9Be1 cyclotron frequency is

Vc 5 B0q/M 5 2p3 7.6 MHz and the frequency of the ions’ harmonic COM
motion along z is v1 5 2p3 795 kHz. Ion rotation is precisely controlled with
an external rotating quadrupole potential26. For 100 = N = 350, we set
vr < 2p3 45 kHz so that the radial confinement is weak enough that a cloud of
ions relaxes into a single 2D plane (b= 1). When the ions’ motional degrees of
freedom are Doppler laser cooled30 (TCOM < 1 mK), the ions naturally form a 2D
Coulomb crystal on a triangular lattice, which is the geometry that minimizes the
energy of their mutual Coulomb potential energy. The crystal has N transverse
eigenmodes, vm, with eigenfunctions bm; the COM mode, v1, is the highest-
frequency mode (Fig. 2a).

The spin-dependent ODF is generated by a pair of off-resonance laser beams
with angular separation hR < 4.8u and difference frequency mR (Fig. 1). The result
is a travelling 1D optical lattice of wavelength lR~2p=Dk<3:7 mm whose wave-
fronts propagate along z, traversing the ion crystal at frequency mR/2p. Alignment
of the optical lattice is crucial for proper spin–spin coupling (Supplementary
Information). The lattice’s polarization gradient induces a differential a.c. Stark
shift on the qubit states (a spin-dependent force). We choose operating conditions
that give F"< 2F#, where F:~F0 cos (mRt)ẑ. For reference, if the single-beam
intensity at the ions is IR 5 1 W cm22, we obtain F0 < 1.4 3 10223 N.

Small, coherent displacements that produce negligible spin–motion entangle-
ment (as required by equation (2)) are obtained for detunings satisfying

B mR{vmj jwF0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B(2�nmz1)=2Mvm

p
This is a more stringent criterion than that used by others13,29, because it includes
an additional factor of

ffiffiffiffi
N
p

to account for a typical distribution of composite spin
states. Moreover, we also include a correction factor for finite temperature,
�nm<kBT=Bvm, where kB is the Boltzmann constant.
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