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Abstract. Building robust instruments capable of making interferometricmeasurementswith preci-
sion beyond the standard quantum limit remains an important goal in many metrology laboratories.
We describe here the basic concepts underlying spin squeezing experiments that allow one to sur-
pass this limit. In principle it is possible to reach the so-called Heisenberg limit, which constitutes an
improvement in precision by a factor

√
N, whereN is the number of particles on which the measure-

ment is carried out. In particular, we focus on recent progress toward implementing spin squeezing
with a cloud of beryllium ions in a Penning ion trap, via the geometric phase gate used more com-
monly for performing two-qubit entangling operations in quantum computing experiments.
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1. INTRODUCTION

Exploitation of coherent quantum phenomena represents a new frontier in the �eld of
metrology, that study which aims to achieve measurements of physical phenomena with
ever increasing precision. Probably the prototypical quantum metrology experiment
is the simple Ramsey interferometry measurement used in atomic clocks, which for
decades has been the basis for the calibration of time and frequency standards. Modern
quantum metrology experiments, however, often entail sophisticated manipulation of
several quantum degrees of freedom to achieve a single measurement outcome. As an
example consider the quantum-logic spectroscopy clock measurements in which the
state of an internal clock transition of one atom is transferred to a detectable transition
in an auxiliary atom using the quantum mechanical motion of the atoms as a bus [1].
A natural limit in precision of a measurement carried out on an ensemble of N un-

correlated particles is the standard quantum limit, in which the measurement precision
scales with∼ 1/

√
N. This scaling is a direct consequence of the Poissonian statistics re-

sulting from the lack of correlation between the measurement outcomes of the individual
particles. On the other hand, the intrinsic limit of a quantum measurement is governed
by Heisenberg’s uncertainty principle and allows the precision to scale as ∼ 1/N, the
Heisenberg limit [2]. Any quantum state that allows a measurement precision surpass-
ing the standard quantum limit is said to be “squeezed”. This proceedings reviews the
mathematical description of squeezing in pseudo-spin systems and current progress to-
ward implementing squeezing in trapped ion systems.
Several strategies to achieve spin squeezing exist, and a number have been imple-

mented experimentally. One method is through the use of quantum non-demolition mea-
surements. A typical implementation relies on the coupling between the Stokes vector
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of a probe beam of light and the spin state of an ensemble of cold atoms. This cou-
pling induces a spin-dependent polarization rotation of the probe beam, which can be
measured with a polarimeter down-stream of the atoms. The outcome of such a mea-
surement allows one to improve one’s prediction for the outcome of a subsequent mea-
surement, which constitutes a reduction in spin noise, i.e. squeezing of the spin un-
certainty. Although this measurement conveys information regarding the spin-state it is
non-projective and hence is labelled as a non-demolition measurement. Oftentimes the
amount of squeezing is characterized by comparing the ratio of the variances of the
measured spin component of the squeezed versus unsqueezed states:

S = 10log

(
σ2
squeeze

σ2
unsqueeze

)
. (1)

This approach has been used by Appel et al. [3] as well as Takano et al. [4] to produce
respectively S =−3.4 dB and S =−1.8 dB of squeezing.
An alternative approach to squeezing is through engineering of a phase shift that de-

pends nonlinearly on the spin-state of the particles. In cold, neutral atomic gases one way
to realize such a nonlinearity is via the mean-�eld interaction resulting from interparticle
s-wave scattering. This interaction is ever-present, so the technical challenge is to turn it
on, or off, controllably. This ability was recently demonstrated by two groups. Riedel et
al. [5] studied a two-component Bose-Einstein condensate formed by atoms in different
hyper�ne states. They controlled the nonlinearity by employing a trap which can inde-
pently manipulate the trapping potential of the two components. Since the mean-�eld
interaction depends on the overlap of the wavefunctions of the two components, which
their trap allowed them to vary, they were able to controllably squeeze and achieve a
reduction in spin noise of S = −3.7 dB. Gross and co-workers [6] achieved the same
goal by instead tuning the s-wave scattering length using a narrow Feschbach resonance,
obtaining S =−8.2 dB of squeezing.
A nonlinearity can also be engineered by placing an ensemble of atoms in an optical

cavity. The presence of light circulating in such a cavity induces an ac Stark shift on the
hyper�ne groundstate levels close to resonance with the cavity mode. The atoms in turn
modify the index of refraction in the cavity which shifts the cavity resonance frequency.
As a result, the light shift on each atom depends on the presence of all other atoms in
the cavity leading to the nonlinear phase shift required for squeezing. Leroux and others
[7] achieved S = −5.6dB of squeezing using this approach. Recently, using a similar
approach Thompson and co-workers achieved S =−3.4 dB of squeezing on nearly 106
Rb atoms [8].
The aim of this proceedings is to give a pedagogic overview of the formalism needed

to describe squeezing in an ensemble of two-level systems, as well as the quantum
optics relevant to a particular implementation using trapped ions in a Penning trap that
depends on creation of a nonlinear phase shift. The rest of this manuscript is organized
as follows: in the next section we summarize the mathematical language required to
describe the squeezing effect in an ensemble of two-level particles. We then consider
the spin squeezing interaction �rst discussed in detail by Kitagawa and Ueda [9]. This
is followed by a description of how the squeezing interaction can be engineered in
a trapped ion system, which builds on the �rst squeezing demonstrations with two
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trapped ions in a radio-frequency Paul trap [10]. The particulars of the Penning ion
trap experiment are then discussed before the �nal section looks at some of the technical
challenges faced in successfully implementing the experiment.

2. PSEUDO SPIN ALGEBRA

In this section we develop a convenient mathematical description for an ensemble of
N two-level systems of which the two levels are coupled by an oscillating electric or
magnetic �eld. Assuming each particle can be in either of the states | ↓〉, | ↑〉, the many
particle Hamiltonian coupling the two states can be expressed in a frame rotating at the
transition frequency between the levels as

H =
N

∑
i=1

h̄
2

δσ zi + h̄ΩR
N

∑
i=1

(
σ−
i +σ+i

)
, (2)

where the index i labels the i’th particle. Here δ = ω0−ω is the detuning between the
transition frequency ω0 and drive �eld frequency ω , σ zi is the Pauli operator, obeying
the usual spin angular momentum commutation relation

[
σ xi ,σ

y
i
]
= 2iεxyzσ zi , while the

raising and lowering operators are de�ned via σ+i =
1
2(σ

x
i + iσ

y
i ), σ−

i =
1
2(σ

x
i − iσ yi ) and

have the effects: σ+i | ↓〉= | ↑〉, σ−
i | ↑〉= | ↓〉. It is convenient to introduce the following

pseudo-spin operators

Jz =∑
i

1
2

σ zi , J+ =∑
i

σ+i , J− =∑
i

σ−
i . (3)

This transformation preserves the spin commutator relation [Jx,Jy] = 2iεxyzJz and allows
the the Hamiltonian to be written concisely as

H = h̄δJz+ h̄ΩR
(
J−+ J+

)
. (4)

As typical experiments are initiated with all particles optically pumped to a speci�c state,
we consider the action of the lowering operator on that initial state with all particles in
| ↑〉, i.e. |J = N/2,MJ = N/2〉 = |N/2,N/2〉 = | ↑↑↑ ... ↑↑〉. The choice of labelling in
the left-hand ket in the latter will become clear presently. Operating consecutively with
the lowering operator we get (the normalization factors in what follows are explicitly
calculated in Appendix A):

|N/2,N/2−1〉= 1√
N
J−| ↑↑↑ ... ↑↑〉=∑

j

σ−
j√
N
| ↑↑↑ ... ↑↑〉= 1√

N∑
j
| ↑↑ ... ↓ j ... ↑↑〉(5)

|N/2,N/2−2〉= 1√
2!N(N−1)

J2−| ↑↑↑ ... ↑↑〉 (6)

=
1√

2!N(N−1) ∑
j1, j2

σ−
j1σ−

j2 | ↑↑↑ ... ↑↑〉 (7)

=

√
2!√

N(N−1) ∑
j1< j2

| ↑↑ ... ↓ j1 ... ↓ j2↑〉 (8)
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The state on the right hand side in (8) is therefore a symmetric superposition of all
number states for which two particles are in the down state and all other particles in the
up state. Likewise after applying J− for N/2 times, one gets

|N/2,0〉 = 1√
N!
JN/2− | ↑↑↑ ... ↑↑〉 (9)

=
1√
N! ∑

j1, j2,... jN/2
σ−
j1σ−

j2 ...σ
−
jN/2| ↑↑↑ ... ↑↑〉 (10)

=
(N/2)!√
N! ∑

j1< j2<...< jN/2
| ↑ ... ↓ j1 .. ↓ j2 ... ↓ jN/2 .. ↑〉, (11)

and N times
|N/2,−N/2〉= JN−| ↑↑↑ ... ↑↑〉= | ↓↓↓ ... ↓↓〉. (12)

Or in general

|N/2,N/2−q〉=
√
q!(N−q)!√
N! ∑

j1< j2<...< jq
| ↑ ... ↓ j1 .. ↓ j2 ... ↓ jq .. ↑〉. (13)

It is now apparent that the second index in our labelling of the left-hand kets indicates
one-half of the difference between the number of particles in the state | ↑〉 versus | ↓〉.
That number is exactly the eigenvalue of the Jz operator, as is clear from the following
examples:

Jz| ↑↑↑ ... ↑↑〉=∑
i

1
2

σ zi | ↑↑↑ ... ↑↑〉=
N
2
| ↑↑↑ ... ↑↑〉 (14)

Jz(
1√
N
J−| ↑↑↑ ... ↑↑〉) = 1√

N∑
i, j

1
2

σ zi | ↑↑ ... ↓ j .. ↑↑〉 (15)

= (
N
2
−1)

1√
N∑

i
| ↑↑ .. ↓i ... ↑↑〉 (16)

Jz
1√

2!N(N−1)
J2−| ↑↑ ... ↑↑〉= (

N
2
−2)

1√
2!N(N−1) ∑

j1 �= j2
| ↑ ... ↓ j1 ... ↓ j2↑〉. (17)

We have thus constructed a set of basis states that are eigenstates of the Jz operator, i.e.
Jz|N/2,N/2−m〉 = (N/2−m)|N/2,N/2−m〉 with m = 0,1,2, ...N. With some more
algebra it can be shown that these states are simultaneously eigenstates of the operator
J2 = J2x + J2y + J2z , with the degenerate eigenvalue (N/2)(N/2+ 1). This motivates the
choice of labelling for the �rst index. The set of states |N/2,N/2−m〉 therefore behave
as eigenstates of a spin angular momentum with magnitude N/2, and can be denoted
as |J,MJ〉. We will refer to these as a pseudo-spin. These states are well known from
the theory of superradiance described by Dicke in 1954 [11] and are often referred to
as Dicke states. It is important to note that the states do not span the entire Hilbert
space, but just the particular symmetric subspace constructed here. However, since we
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FIGURE 1. The state of an N-particle pseudo-spin system can be represented by a Bloch-vector vector
of length J = N/2.

will consider only experiments initiated with all particles pumped into the state | ↑〉, the
dynamics accessible through (4) restricts the system to this symmetric subspace.

A useful pictorial description of a single two-level system can be brought to bear
here, namely the concept of a Bloch vector. Any state of a single two-level system can
be represented by the state vector with coef�cients (e−iφ cosθ ,eiφ sinθ). One can think
of the parameters as being the polar angle, θ , and the azimuthal angle, φ , of a unit vector
in 3D space, called the Bloch vector as shown in �gure 1. Likewise, we can represent the
state of the N-particle system by a vector of length N/2. In analogy to the single particle
case, when the Bloch vector points along the positive z-axis it represents a state with
all particles in | ↑〉, when it points along the negative z-axis it represents a state with all
particles in | ↓〉. As a result of the uncertainty relation ΔJxΔJy ≥ 〈Jz/4〉 the projections
of the Bloch vector onto the x and y axis when in the state |N/2,N/2〉 are non-zero, so
that the vector should instead of a line element, be thought of as a cone with its apex at
the origin, and the width of which indicates the uncertainty in the projections.
To complete the picture for other directions on the Bloch sphere we have to consider

the dynamics due to (4), which for δ = 0 can be simply rewritten as H = h̄ΩRĴx. The
time evolution then becomesU(t)= exp(−iΩRĴxt)which one recognizes as the rotation
operator for the pseudo-spin which causes a rotation of the vector through an angle ΩRt
around the x-axis. Starting with the state |N/2,N/2〉 and operating with Û(ΩRt = π/2)
therefore places the Bloch vector along the y-axis. By expanding the Û(π/2) one �nds
that the state of the system is

|CS〉= 1
2N/2

N/2

∑
MJ=−N/2

(
N

N/2+MJ

)1/2
|N/2,MJ〉 (18)

which is known as a coherent spin state. The uncertainty in a measurement of 〈CS|Jz|CS〉
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FIGURE 2. Probability of projecting the squeezed state ÛSq(χt)|CS〉 on the rotated state
exp(−iφ Ĵz)exp(−iθ Ĵx)|CS〉where the squeezing operator was applied for times (a) χt = 0, (b) χt = 0.05,
and (c) χt = 0.1, respectively.

scales as 1/
√
N, i.e. the standard quantum limit, due to the binomial distribution of

amplitudes in (18).

3. KITAGAWA SHEARING GATE

In a seminal paper in 1993 [9] Kitagawa and Ueda described spin-squeezing in pseudo-
spin systems which results from unitary transformations of the form

ÛSq(t) = exp
[−iχ Ĵ2z t]. (19)

The effect of the squeezing operator ÛSq(t) on any superposition of spin states is to
induce a phase shift that depends nonlinearly on the Ĵz eigenvalue of each state. We
consider now the resulting dynamics on the coherent state |CS〉 de�ned above. Figure 2
shows a sequence of snapshots of the uncertainty distribution of |CS〉 for J = 25 after it
has been subjected to ÛSq(t) for times (a) χt = 0, (b) χt = 0.05 and (c) χt = 0.1 respec-
tively. As a measure of that uncertainty �gure 2 plots the modulus squared of the projec-
tion of the state ÛSq(t)|CS〉 onto a rotated coherent state, exp(−iφ Ĵz)exp(−iθ Ĵx)|CS〉,
as a function of the two rotation angles. It is clear that the squeezing operator shears the
uncertainty cone, reducing the uncertainty along one spin axis at the cost of increasing
the uncertainty along an orthogonal axis. The state is said to now be “squeezed”. Kite-
gawa and Ueda referred to this effect as one-axis twisting of the uncertainty cone. Note
that as the squeezing takes place, the Bloch vector also shortens even though the system
remains in a pure state. An appropriate parameter to quantify the metrologically relevant
squeezing, which takes into account this shortening, is ξ = ΔJ⊥/

√
J/2 where ΔJ⊥ is

the root-mean-squared deviation along the direction of minimum uncertainty. Figure 3
plots ξ as a function of the time that the squeezing operator is applied, again for J = 25.
The squeezing does not inde�nitely reduce the uncertainty in Jz, but eventually reaches
a minimum uncertainty around ξ = 0.28 for J = 25. The minimum value of ξ decreases
for larger numbers of spins as the curvature of the Bloch sphere becomes less [9].
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FIGURE 3. The squeezing parameter ξ = ΔJ⊥/
√
J/2 as a function of time.

It is this single-axis twisting Hamiltonian that we aim to realize by use of trapped
ions, as discussed next.

4. SHEARING GATES WITH IONS

One way of implementing the squeezing operator (19) in trapped ions relies on a
generalization of the geometric ion-qubit phase gate demonstrated by Leibfried et al.
[12]. In that experiment the quantum motion of ions in a trap is used as a bus to mediate
the nonlinear phase shift required to affect squeezing. An experimental sequence is as
follows:
(1) N ions are trapped and cooled in an ion trap with characteristic center-of-mass
frequency ωz.
(2) The internal state of the ions is prepared in the superposition |CS〉, (18).
(3) An oscillatory force is applied to the ions, close to resonance with the axial center-
of-mass mode of motion of the multi-ion system. The force is designed to be state
dependent, so that ions in the state | ↓〉 feel an equal but opposite force to ions in the
state |↑〉. As a result the force will depend on the value ofMJ of the pseudo-spin states.
(4) The frequency of the oscillatory force is chosen off-resonant by a detuning δ ′, so
that after a period t = 2π/δ ′ the drive force has completely dephased and rephased with
the oscillating ions, thus accelerating and decelerating it and returning it to its initial
motional state.
A geometric interpretation gives a simple physical picture of how this sequence leads

to squeezing [12]. Since the ions return to their initial motional state, they trace out a
closed loop in phase-space, as pictorially represented in Fig. 4. As a result, they acquire
a geometric phase, Φ, proportional to the area, A, of the loop. Since the force, F , on each
ion depends on the internal state of that ion, the force on the multi-ion system depends
on the difference between the number of ions in the states |↓〉 and |↑〉, and therefore on
the eigenvalue of Jz for a state |N/2,N/2−m〉. In turn the radius, R of the phase-space
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FIGURE 4. Squeezing is implemented on trapped ions by applying a force on the ions that depends
on their internal state, | ↓〉 or | ↑〉. This schematic represents an interaction picture in which the time
evolution at the excitation frequency has been removed. If the ions are excited in such a way that they
trace out closed loops in phase space, as pictured here, they will acquire a geometric phase proportional
to the area of the loop. That phase has the requisite Ĵ2z dependence to cause squeezing.

FIGURE 5. Experimental scheme for implementing squeezing. (a) Two laser beams are chosen to have
relative detunings close to the characteristic motional axial center-of-mass frequency, ωz of the trapped
ions. (b) The laser beams are overlapped so as to form a moving interference pattern oscillating at ωz and
with a wave vector normal to the plane in which the ions form a planar ion crystal.

loop depends linearly on the force so that R ∝ F . Since the area A = πR2 we therefore
know that the Φ ∝ A ∝ J2z . This relation is precisely what is needed to implement (19).

Experimentally the required force is implemented by use of a pair of detuned laser
beams illuminating the ions. Consider an ensemble of ions all lying in a single plane,
each with a three-level internal structure, as shown in Fig. 5(a). The ions are illuminated
by the laser beams in a con�guration shown in Fig. 5(b) and the laser beams have fre-
quencies, ω1 and ω2. We require that δ ′  ωz Δ. If δL = ω1−ω2 = 0 the overlapping
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FIGURE 6. Dynamics resulting from the Hamiltonian (20). (a) States starting in the motional ground
state, but with different MJ values, indicated in the legend, are excited and de-excited as is evident from
the periodic increase and decrease in expected excitation number 〈n̂〉. Higher MJ values reach higher
excitation numbers, but all states return to the motional ground state after each period χt = 2π/δ ′. (b) The
corresponding phases as a function of time for each state represented in (a). (c) The parabolic character of
the phases acrued after time χt = 5× 2π/δ ′ illustrates the correct dependence to allow squeezing.

light �elds will form a standing-wave interference pattern along the direction normal to
the plane of the ions. The standing wave leads to a position dependent AC Stark shift on
the ions, while the gradient of this shift results in a position-dependent force on the ions.
Through appropriate choice of laser polarization and detuning, Δ, a different AC Stark
shift is obtained for the |↓〉 and |↑〉 states, resulting in a state-dependent force. Detuning
the light beams by δL =ωz will cause the standing wave to “walk”, resulting at any point
in a periodic force, oscillating at the characteristic center-of-mass frequency of the trap,
which will excite the motion of the ions.
A key requirement to ensure that the motion gets excited is that the spatial extent

of the ions’ wavefunction is signi�cantly smaller than the wavelength of the standing
wave. This condition is referred to as the Lamb-Dicke criterion and can be expressed as
η = x0ke f f  1, where x0 is the characteristic width of the ions’ spatial wavefunction
along ke f f , the wavevector of the standing wave. If the Lamb-Dicke criterion is not met,
the ion wavefunction will feel a drive force in one direction at some points and in the
opposite direction at others. The force will average to zero and no excitation will occur.
Given that the Lamb-Dicke criterion is ful�lled and δL = ωz+δ ′, one can write down

an effective Hamiltonian for the interaction between the light �elds and the atom as
follows:

H =
g2η
Δ
(â†eiδ

′t + âe−iδ
′t)Jz. (20)

Here g= dE where d is the dipole matrix element and E the amplitude of the light �eld.

Under the action of Hamiltonian (20) for a time 2π/δ ′ the ions will trace out precisely
the closed loop in phase space discussed above. This is illustrated in �gure 6, where in
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FIGURE 7. A single plane of ions. This image was obtained by strobing the camera synchronously
with the ion plane rotation. For details see [13].

(a) we plot the average number of excitations of the center-of-mass oscillator mode,
〈n̂〉 = 〈â†â〉, as a function of the time and for different initial states: thick solid line -
|0〉|MJ = 1〉, thin solid line - |0〉|MJ = 2〉, dashed line - |0〉|MJ = 3〉, dot-dashed line -
|0〉|MJ = 4〉 and dotted line - |0〉|MJ = 5〉. In the latter the �rst ket |0〉 represents the
ground state of the motional mode corresponding to the operator â†. As predicted, the
average excitation number increases and then decreases back to zero for each period
t = 2π/δ ′, consistent with the ions undergoing an excursion in phase space away from
its equilibrium position and back. Moreover, those states with larger MJ undergo larger
excursions. Figure 6(b) plots the complex phase as function of time for the same states,
demonstrating that this phase monotonically increases with time and is also dependent
on the value of MJ. Figure 6(c) plots the �nal phase, diamonds, at time t = 5× 2π/δ ′
for all states |0〉|MJ〉 with −5 ≤ MJ ≤ 5. The solid line is not a �t, but the function
f (MJ) = 5×4π(g2η/Δ)2M2

J/δ ′, clearly demonstrating the quadratic dependence of the
phase on the value ofMJ, as expected for the squeezing operator.

5. PENNING TRAP IMPLEMENTATION

Efforts are currently underway at NIST in Boulder, Colorado, USA to implement the
scheme discussed above in a Penning ion trap. A feature of the Penning trap compared
to RF-Paul trap setups is its ability to capture many ions (hundreds) in a single plane.
While a detailed discussion of the plasma physics involved in Penning traps is beyond
the scope of this proceedings we give a brief overview of the aspects most relevant to us.
To con�ne ions a Penning trap uses a combination of a static, cylindrically symmetric

electric quadrupole �eld, and a static magnetic �eld oriented parallel to the axis of sym-
metry of the electric �eld [14]. The electric �eld provides harmonic axial con�nement
and the magnetic �eld con�nement in the radial plane in which a single isolated ion will
undergo complicated epitrochoid motion. A cloud of ions in the trap will rotate rigidly
around the symmetry axis, and the geometry of the cloud depends sensitively on the ro-
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FIGURE 8. Design of the NIST Penning ion trap. Static voltages are applied to four stacked cylindrical
electrodes to provide a quadrupole electric �eld that con�nes the ions along the axial direction. A 4.5 T
magnetic �eld provided by a superconducting magnet provides con�nement in the transverse plane.

tation frequency, varying from cigar-shaped to pancake-shaped. When suf�ciently cold,
and at the appropriate rotation frequency the ions will crystalize into a disc consisting of
a single ion layer. Such a disc is pictured in Fig. 7.
The physical trap, Figure 8, consists of two pairs of stacked cylindrical electrodes

onto which static voltages of 1.2 kV are applied to provide the quadrupole electric �eld.
A magnetic �eld of 4.5 T is provided by a superconducting magnet. Cooling laser beams
enter the trap both axially and perpendicular to the trap axis. The ions can be imaged
both by a side-view or top-view camera. Taking stroboscopic images with the top-view
camera reveals the crystalline structure of the ions, see Fig. 7. For a single plane the ions
for a triangular lattice.
The NIST experiment traps 9Be+ ions for which the level structure is given in �gure

9. The states |J = 1/2,MJ = 1/2〉 and |J = 1/2,MJ = −1/2〉 in the 2S1/2 hyper�ne
groundstate manifold serve as the spin states | ↑〉, | ↓〉 respectively. They are separated
by 124 GHz and controlled by microwaves generated by a p-i-n diode oscillator and
injected into the trap through a microwave horn. The microwave �eld allows high �delity
rotations on the Bloch-sphere. Doppler cooling is achieved by off-resonant scattering of
313 nm light between the states |↑〉 and |J = 3/2,MJ = 3/2〉 in the 2P3/2 manifold.

6. CHALLENGES

Several technical challenges must be met to successfully implement squeezing as de-
scribed in the preceding sections.
Beam alignment - In order to strongly couple to the target center-of-mass mode, precise
beam alignment must be arranged. If the beams are offset to the side of the ion disc a
tilt mode might be preferentially excited, or if they push harder in the center than on the
edges a drumhead mode might be excite more strongly.
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FIGURE 9. Level structure of 9Be+ at 4.5 T. We neglect the Be+ nuclear spin (I= 3/2) in this diagram.
The nuclear spin is optically pumped to theMI = 3/2 state throughout the duration of an experiment.

Off-resonant scattering - One of the most deleterious problems is that of decoherence
of the superposition of spin states as a result of off-resonant scattering of the drive
beams. The scattering processes can broadly be classed as either Raman scattering, dur-
ing which the atomic state after scattering differs from that before the scattering, and
Rayleigh scattering, during which the atom returns to the same state after scattering.
To conserve energy during Raman scattering, the scattered photon must have a slightly
different frequency from the drive photon. As a result a measurement on the photon will
reveal “which-path” information and lead to strong decoherence. Since the photon en-
ergy does not change during a Rayleigh process, which-path information is not revealed
in the same way. Consequently it has been commonly accepted that Raman scattering is
the dominant decoherence process for experiments with far detuned �elds [7, 15], and
that the contribution due to Rayleigh scattering is negligible when the scattering rates
are the same from the states |↓〉 and |↑〉.
Recently it was shown that the decoherence effect due to Rayleigh scattering must

calculated more carefully [16]. In particular, the Rayleigh decoherence of a spin-
superposition depends on the square of the difference between the sum of amplitudes
for all scattering processes from the state | ↓〉 and the sum of amplitudes for all scatter-
ing processes from the state |↑〉. Since the scattering amplitudes depend on the detunings
of the light �elds, it is possible that for certain choices of detunings the decoherence con-
tributions due to scattering from | ↓〉 might add constructively to the contribution from
scattering from | ↑〉. In fact, even though the drive �elds might be far off-resonance, the
Rayleigh contribution might be dominant over decoherence due to Raman scattering.
The laser detunings used in the Penning trap experiment fall in this regime.
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Dephasing - A secondary source of decoherence is dephasing, which results primarily
from three sources: magnetic �eld �uctuations, instability of the microwave phase ref-
erence and �uctuations in the AC Stark shift due to either power �uctuations in the laser
beam or beam pointing noise. A single spin-echo π-pulse midway during the squeezing
operation mitigates the dephasing so that its effect can be neglected as compared to the
decoherence resulting from spontaneous light scattering.

7. CONCLUSION

Modern trends in metrology experiments indicate that measurement devices of the future
will exploit pure quantum effects to break old barriers in sensitivity. Spin-squeezing is
a promising quantum technique for surpassing shot-noise limited measurements. It is a
technology currently being pursued by several laboratories world wide with promising
progress. This proceedings discussed aspects of spin-squeezing using beryllium ions in
a Penning ion trap which will complement recent successes in neutral atom traps.
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8. APPENDIX A

We wish to construct properly normalized states generated by(J−)q| ↑↑↑ ... ↑↑〉. So

(J−)q| ↑↑↑ ... ↑↑〉 = (∑
j

σ̂−
j )
q| ↑↑↑ ... ↑↑〉 (21)

= ∑
j1, j2,... jq

σ̂−
j1 σ̂−

j2 ...σ̂
−
jq | ↑↑↑ ... ↑↑〉. (22)

Each index jk in (22) runs from 1 to N. However, whenever any two or more operators
σ̂−
jk have the same index, the term will vanish after operation on the state | ↑↑↑ ... ↑↑〉,

since a lowering operation cannot be applied to the same particle twice. We therefore
need only keep terms in the sum for which every index is different, and of which there
are N(N−1)(N−2)...(N− (q−1)), so

(J−)q| ↑↑↑ ... ↑↑〉= ∑
j1 �= j2 �=... �= jq

σ̂−
j1 σ̂−

j2 ...σ̂
−
jq | ↑↑↑ ... ↑↑〉. (23)

Now, after applying all operators σ̂−
jq there are q! duplicates of each state

| ↑↑↓ j1 ... ↓ j2 ... ↓ jq↑〉. For example, if q = 3 each of the 3! permutations: σ̂−
1 σ̂−

2 σ̂−
3 ,

σ̂−
1 σ̂−

3 σ̂−
2 , σ̂−

2 σ̂−
1 σ̂−

3 , etc. leads to the same state | ↓↓↓↑ ... ↑〉. So keeping only unique
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terms we can rewrite (23) as

(J−)q| ↑↑↑ ... ↑↑〉= q! ∑
j1< j2<...< jq

σ̂−
j1 σ̂−

j2 ...σ̂
−
jq | ↑↑↑ ... ↑↑〉. (24)

Notice in (24) the change in indexing of the sum as compared to (23) and the extra
factor q!. Equation (24) contains N = N(N−1)(N−2)...(N− (q−1))/q! terms so to
normalize it we must divide by q!

√
N =

√
q!N(N−1)(N−2)...(N− (q−1)). Finally

then, our properly normalized states are

|N
2
,
N
2
−q〉= 1√

q!N(N−1)...(N− (q−1))
(J−)q| ↑↑↑ ... ↑↑〉 (25)

=

√
q!√

N(N−1)...(N− (q−1)) ∑
j< j2<...< jq

σ̂−
j1 σ̂−

j2 ...σ̂
−
jq | ↑↑↑ ... ↑↑〉. (26)

We leave it to the reader to verify that these states will obey the expected raising and
lowering relations of angular momentum states:

J±|J,MJ〉=
√
J(J+1)−MJ(MJ±1)|J,MJ±1〉. (27)
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