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I will show how the statistical models that are used to describe the performance of atomic clocks are
derived from their internal design. These statistical models form the basis for time scales, which are
used to define international time scales such as International Atomic Time and Coordinated Universal
Time. These international time scales are realized by ensembles of clocks at national laboratories such
as the National Institute of Standards and Technology, and I will describe how ensembles of atomic
clocks are characterized and managed. [http://dx.doi.org/10.1063/1.3681448]

I. INTRODUCTION

A time scale is a procedure for assigning names to con-
secutive instants. The foundation of every time scale is a pe-
riodic event that is used to define the basic time interval. The
time at any epoch is then the number of periodic events that
have elapsed since the epoch that was chosen as the origin of
the scale. The time scale may also include a mechanism for
interpolation between occurrences of the periodic events that
are the basis of its definition.

Astronomical observations have always been an impor-
tant part of every time scale.1 The solar day and the solar
year have been used since antiquity, and many societies also
used observations of the periodic variation in the positions of
moon and the stars to measure time intervals.2 The periods
of these events are not commensurate, and calendars, which
are often based on several astronomical events, are complex
as a result. Clocks in general, and the definition of the second
in particular, were originally thought of as a method of in-
terpolating between consecutive astronomical events, which
were considered the primary definition of time and time
interval.

Contemporary time scales have reversed the definition,
and use the second as the primary unit of time interval;3 astro-
nomical periods are now expressed in terms of the definition
of the length of the second. In this paper, we will focus on how
the second is defined in principle and on how it is realized in
practice. However, astronomical events still play a central role
in timekeeping, so that every time scale must still address the
complexities of the calendar. I will not deal with these com-
plexities nor will I discuss how the various time scales that are
currently used address them.4 These are complicated topics,
and a detailed discussion of them would take us far outside
the scope of this paper.

II. THE DEFINITION OF THE SECOND

The second is currently defined as the time interval real-
ized by counting 9 192 631 770 cycles of the frequency asso-
ciated with the hyperfine transition in the ground state of an
unperturbed cesium 133 atom.5 The length of the second de-

fined in this way was chosen to be roughly equivalent to the
previous astronomical definitions.6

Since the measurement of the hyperfine transition per-
turbs the atoms, the magnitude of the perturbation must be
estimated and removed. A primary frequency standard is a
device that is constructed so as to minimize the perturbation
resulting from the measurement process and to facilitate es-
timating the magnitude of the residual perturbation so that it
can be removed from the data.

A number of groups have proposed changing the defini-
tion of the second. For example, advances in measurement
technology have made it feasible to use an optical frequency
to define the second rather than the microwave frequency of
the current definition.7 A higher frequency for the definition
of the second is better in principle, but there are many tech-
nical problems to be overcome before an optical transition
could be used. Although these discussions are in a prelimi-
nary stage, it is likely that the definition of the second will
be modified within a decade. However, for reasons that I will
discuss later in this section, it is unlikely that this change in
the definition will eliminate the need for time scale algorithms
and measurement protocols.

A practical realization of the second must address two
types of problems. The first is a problem of principle: the
frequency measured by an observer depends on the velocity
of the receiver with respect to the source (the Doppler ef-
fect), and on any difference in gravitational potential between
the source and the observation point (the gravitational “red-
shift”). These effects must be included in any definition, be-
cause primary frequency standards are located on the rotating
Earth, and sources and detectors may be at different gravita-
tional potentials even if they are at rest with respect to each
other.

The original concept that the second should be defined
based on the transition frequency of an unperturbed cesium
could be extended to require that the atom be at rest at a lo-
cation where the gravitational potential is 0. It is not possi-
ble or practical to realize this purist definition, and some sort
of compromise is needed. The current definition of the sec-
ond is based on the frequency of cesium atoms located at
rest relative to the rotating geoid, which is an equipotential
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surface of the gravitational potential that is roughly equiva-
lent to mean sea level.8 Frequency standards not located on
the geoid (in Boulder, Colorado, for example, about 1600 m
above the geoid) must be corrected for this height offset.
The correction in fractional frequency is approximately 2
× 10−16/m relative to an observer on the geoid. Frequency
standards located on a moving platform (such as a satellite)
must also be corrected for the Doppler shift of the frequency
when the signal is observed by an observer at rest on the
geoid.

Although the corrections themselves can be quite large
relative to the other contributions to the uncertainty of the
frequency of the primary standard, the uncertainties in these
corrections are not significant at present. However, the im-
portance of these uncertainties will grow as more accurate
frequency standards are developed, and deterministic and
stochastic variations in the position of a frequency standard
with respect to the geoid may ultimately limit the realization
of the second. For example, the gradients in the lunar and so-
lar gravitational potentials produce approximately diurnal and
semi-diurnal tides in the solid Earth that have an amplitude of
about 0.3 m. These tidal effects introduce corresponding diur-
nal and semi-diurnal variation in the frequency of a primary
standard when measured by an observer at a distant location
on the surface.

The second difficulty is a problem of implementation
rather than one of principle. A primary frequency standard
is designed to minimize the effects of various systematic fre-
quency offsets between the frequency realized by the de-
vice and the frequency of the unperturbed atom. In addition,
the residual frequency offsets must be estimated. It is dif-
ficult to operate a primary frequency standard continuously
as a clock and simultaneously satisfy these requirements,
and many primary frequency standards operate only inter-
mittently with the data used to calibrate a continuously run-
ning clock that is used to disseminate the time and frequency
information.

The continuously running clock, on the other hand, must
be designed to be reliable, with a frequency stability that is
optimized for the interval between calibrations by the primary
device. The accuracy of this clock is less important, because it
will be calibrated by the primary device. Since a single clock
may fail with little warning, a robust design generally uses
the data from the primary frequency standard to calibrate an
ensemble of clocks rather than just a single device. Thus, the
need for a time scale, a process for defining the time of an
ensemble of clocks in a statistically robust way, is born.

The need for a time scale as a flywheel between evalua-
tions by a primary frequency standard is unlikely to disappear
as newer, more accurate primary frequency standards are de-
veloped. In fact, the opposite may occur because the labora-
tory prototypes of many advanced primary standards operate
only intermittently and with a relatively short duty cycle. This
will require an even more stable flywheel time scale that can
be used to transfer the accuracy of the primary device to users.

The remainder of the paper is devoted to a discussion of
how such hardware time scales are currently realized. As we
will see in the following discussion, there is no obviously best
implementation for a time scale – every implementation has

some weakness, and is therefore a compromise among com-
peting and incompatible goals.

III. STATISTICAL TOOLS AND THE DEFINITION
OF SYMBOLS USED IN THE TEXT

In the following discussion, we will present a number
of statistical tools that are often used to characterize time
and frequency data. The most important concept is the Allan
(or two-sample) deviation, which provides an estimate of the
RMS variation of the average frequency of a clock (relative
to some other device) measured over two (generally consec-
utive) equal time intervals. Since the time difference of the
clocks (rather than their frequency difference) is often the pri-
mary observable, the Allan deviation equivalently provides an
estimate of the second-difference of the time difference of a
clock with respect to another device.

The Allan deviation is usually expressed as a function of
the averaging time between the time-difference observations
used to compute this quantity. (Alternatively, it is the averag-
ing time used to estimate the frequency difference.) The Allan
deviation is a root-mean-square quantity and does not provide
any information on the distribution of the data that are used
to compute it. Therefore, it is much less useful when the data
contain deterministic variations or steps in time or frequency.
In addition, it is a measure of frequency stability rather than
time or frequency accuracy, since constant time or frequency
differences between the two devices cancel in the computa-
tion of the differences and do not contribute to the result.

The Allan deviation can also be used to estimate the
time deviation of a clock given its frequency variation. The
time deviation is typically called TDEV. The dependence
of the Allan deviation and TDEV on the averaging time used
to compute them (specifically the slope of a log-log plot of
the variance as a function of the averaging time) provide in-
formation on the characteristics of the variance of the data.

In many cases, the dependence of the Allan deviation
on the averaging time can be approximated by a polynomial
function with only a few terms. The terms in the polynomial
with negative powers of the averaging time tend to be most
important at shorter averaging times, while the terms with
positive powers tend to dominate at longer times. Thus, the
log-log plot of the variance as a function of averaging time
typically has a “U” shape, which can be approximated by a se-
ries of straight-line segments. The bottom of the “U” is often
called the “flicker floor” because it is the domain of averaging
times where an increase in averaging time does not produce a
corresponding improvement in the stability of the device. In-
creasing the averaging time beyond this domain degrades the
stability. From the physical point of view, the flicker floor is
the point where the simple stationary, random-noise model of
the time differences is no longer an accurate description of the
data. While the variance of the data is no longer characterized
by a simple stationary random-noise model in this domain,
it cannot be characterized by a deterministic variation either.
From the perspective of Fourier frequency, the noise in this
domain is increasingly “red” in character. The increase in the
power spectral density of the noise at low Fourier frequencies
means that relatively short segments of data may appear to
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TABLE I. An explanation of all of the symbols and the notation used in the text.

x The time difference between a clock and a reference in units of seconds
y or f The frequency difference between a clock and a reference. The symbol y is

in units of seconds/second (dimensionless) and f is the frequency in Hz.
D The frequency aging between a clock and a reference in units of seconds−1

Upper case values are measurements or administrative parameters, lower
case values are estimated or calculated values

t A particular instant of time in units of seconds
τ , �t A time interval between measurements or calculations, measured in

seconds
σ Average prediction error of clock in ensemble calculation
ε Prediction error of clock in ensemble calculation
ξ , η, ζ , v Standard deviations of noise terms, assumed to have zero mean
W Weight of clock in ensemble average
(k−) The parameter was evaluated immediately before time tk
(k+) The parameter was evaluated immediately after time tk
MJD Modified Julian day number. An integer value that is incremented at 0000

UTC every day. It is commonly used in time scale calculations because it
eliminates the complexities of time difference calculations when using the
more common year-month-day notation. For example, 1 January 2011
corresponds to MJD 55 562.

Subscript j, m, n An index number identifying a particular clock
Subscript e The parameter is with respect to the ensemble average
Subscript r The index of the reference clock for a measurement system
Subscript s A parameter used for clock steering
Subscript k or 0 or (k) The parameter was measured or evaluated at epoch tk or at the origin t0
Superscript ^ The estimate of a parameter
Superscript ∼ The error or uncertainty of the estimate
→, also boldface Vector quantity
= over a quantity, also boldface Matrix
K and K′ Kalman gain matrices
S Kalman state vector
N Kalman noise vector
P, Q, C Kalman covariance matrix
H Kalman measurement matrix
O Kalman measurement vector

have a deterministic character, but the appearance is mislead-
ing because the deterministic parameters vary depending on
the length and epoch of the data set.

Flicker noise is present in all devices at some level. It
has no simple physical explanation, and is characterized by
the independence of the Allan variance on the averaging time
as discussed above or by the equivalent 1/f dependence of
the power spectral density on the Fourier frequency of the
data. The time-domain and frequency domain descriptions are
equivalent. If the power spectral density of the frequency in
the flicker domain is given by Pf/f then the Allan variance in
this domain is approximately 2 × ln(2) × Pf.9 For a more
comprehensive review of these concepts, see the previous re-
view article.10

Table I, above, contains a listing of all of the symbols
used in the text.

IV. THE PROPERTIES OF ATOMIC CLOCKS

In order to understand the design of time scales, it is
helpful to understand the properties of the atomic clocks that
are used to construct them. Although the details vary over a
wide range, all atomic clocks consist of an oscillator whose
frequency is stabilized relative to the transition frequency in

some atomic (or molecular) system. The separation between
the oscillator and the frequency discriminator is particularly
easy to see in cesium atomic clocks, and we will use this sep-
aration as the model for all atomic clocks. The same general
principles will apply even for clocks in which the two func-
tions are not so clearly separable, such as lasers or oscillating
hydrogen masers, whose frequencies are determined both by
the properties of the atoms and by the resonant cavity used
to sustain the oscillations. The sensitivity of the output fre-
quency to the properties of the resonant cavity degrades the
theoretical purity of the definition of an atomic clock and in-
troduces practical frequency offsets and aging as we will de-
scribe below.

An atomic clock consists of three distinct systems: (1) the
“physics package,” which produces atoms in the lower state
of the clock transition; (2) the “electronics package,” which
generates the frequency needed to induce the transition in the
reference atoms, which detects these transitions, and which
then locks the frequency of the generator to the maximum of
the transition rate, and (3) the output system, which converts
the frequency of the atomic transition to one that is more suit-
able for comparisons with other devices or for driving clock
hardware. Typical frequency outputs are 5 MHz and 1 Hz, but
other frequencies can also be used. We will always assume
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TABLE II. The frequencies of five nominally identical cesium standards
relative to atomic time as maintained at NIST.

Clock Frequency
(s/s)

1 8.71 × 10−14

2 2.37 × 10−14

3 8.05 × 10−14

4 4.12 × 10−14

5 1.90 × 10−13

that the statistical properties of the output do not depend on
its frequency.

The frequency output of the device is controlled by the
atomic transition frequency in first order. However, the transi-
tion frequency is perturbed even for a cesium device in which
the atoms are interrogated while they are in a beam in a vac-
uum system. The perturbations are caused by residual elec-
tric and magnetic fields, by collisions with other atoms, and
by similar effects. The Doppler shift, and the interaction be-
tween the atoms and the electromagnetic field that induces the
clock transition must also be considered. These perturbations
are likely to vary from one frequency standard to the next one
(even among nominally identical devices) so that we would
expect that even the members of an ensemble of identical de-
vices would have significantly different frequencies. Further-
more, these frequency offsets are likely to change slowly with
time, so that it is not possible to calibrate them and remove
them once and for all. Table II shows the frequencies of five
nominally identical cesium frequency standards with respect
to the National Institute of Standards and Technology (NIST)
clock ensemble. This variation among identical devices is typ-
ical, and these values exhibit both white and random-walk
frequency variations as a function of epoch. The fact that all
of the devices had positive frequencies at the instant the data
were recorded is coincidental. Figure 1 shows the frequency
variation of a typical cesium standard with respect to the NIST
ensemble.

The electronics package also contributes to the frequency
stability of the device. There is shot noise in the detection of
the atoms and noise in the control loop that locks the oscilla-

FIG. 1. (Color online) The frequency of a cesium frequency standard with
respect to the NIST clock ensemble.

tor to the atomic transition frequency. These effects introduce
corresponding fluctuations in the output frequency of the de-
vice. These fluctuations are generally both more rapid and less
predictable that the frequency fluctuations due to the physics
package described above. The separation is never perfect, and
it is often not possible to deduce the source of the frequency
fluctuations from their power spectrum.

Finally, the counting circuitry that generates clock pulses
from the oscillator locked to the atomic transition and any
circuit that uses these pulses operate with only a finite signal
to noise ratio. The measurement system may also be sensitive
to the ambient temperature, so that a measurement of the
time interval between consecutive output pulses will show
fluctuations that are not related to the frequency fluctuations
of the device. It is most important to separate this contribution
from the ones described above, since it generates noise in the
time signals with no corresponding frequency fluctuations in
the clock.

Although all of these effects result in fluctuations in the
consecutive time differences between two nominally identi-
cal devices, the characteristics of the fluctuations due to each
cause are different, and time scale algorithms are designed to
exploit these differences in the characteristics.

V. CLOCK MODELS

If we use the previous discussion as a guide, we are led
to characterize a clock in terms of 3 deterministic parame-
ters: x(t), its time difference, measured in seconds, between
its output and the output of a second device at epoch t; y(t), its
frequency difference, measured as a dimensionless parameter
(units of seconds/second) at epoch t, and d(t), its frequency
aging at epoch t, measured in units of s−1 (seconds per sec-
ond squared). For simplicity, we consider that the second de-
vice used as the reference is perfect, so that the parameters
describe the properties of the device we are characterizing.
The epoch, t, is also derived from the same perfect reference
device.

We model the evolution of these parameters from time
t−�t to t by

x (t) = x (t−�t) + y (t − �t) �t + 1

2
d (t − �t) (�t)2 + ξ,

(1)

y (t) = y (t − �t) + d(t − �t)�t + η, (2)

d (t) = d (t − �t) + ζ, (3)

where ξ , η, ζ are the stochastic contributions to the time dif-
ference, frequency offset, and frequency aging, respectively.
The stochastic contributions are assumed to be uncorrelated,
zero-mean processes with specified variances. For example,
we assume that all 3 noise parameters satisfy equations of the
form

〈ξ (t)〉 = 〈η(t)〉 = 〈ζ (t)〉 = 0, (4)

〈ξ (t) ξ (t ′)〉 = ξ 2δ(t − t ′), (5)

〈ξ (t) η (t)〉 = 0, (6)
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with relationships similar to Eqs. (5) and (6) for the other vari-
ables and for all t and t′. The initial values for the variances of
the noise parameters are estimated either from ancillary mea-
surements or from the known characteristics of the clocks and
the measurement system, and the algorithm updates these ini-
tial estimates on each measurement cycle.

This model is chosen in part because it has an intuitive
connection to the physical design of the hardware components
and in part because it supports the separation of the noise vari-
ance in a natural way, which is also derived from the design
of the hardware. However, it is not the only possible choice
either for the deterministic or stochastic components of the
clock model. In a later section we will discuss a finite impulse
response model, which models the current time difference as
a linear combination of previous observations. This is a par-
ticular type of the more general ARIMA (auto-regressive in-
tegrated moving average) models.11 These methods are often
useful for modeling the performance of a single clock, but are
much less frequently used to model an ensemble of them, and
we will not consider them in detail here.

In general, time scale measurement systems observe x(t),
the time difference as a function of epoch on a regular, pe-
riodic basis. Some systems also can incorporate occasional,
less frequent measurements of y(t) directly into the ensemble
calculation. Since the frequency difference data are often re-
ceived only on an irregular basis, they are often incorporated
into the time scale by a separate steering algorithm, which is
outside of the normal time-scale calculations. We will discuss
steering algorithms below, and limit the current discussion to
the much more common configuration of a system that pro-
cesses only periodic (or nearly periodic) time difference data.

The time scale algorithm predicts the value of x(t) based
on previous computations, compares the predicted values to
the measurements, and updates the parameters of each clock
based on this comparison. The time scale algorithm must sep-
arate the contributions of each of the terms on the right side
of Eq. (1) for each clock in order to do this. The measure-
ment strategy needed to realize this requirement as accurately
as possible depends on many parameters, and I will present a
number of detailed examples to illustrate the method.

VI. MEASUREMENT STRATEGIES

Consider a high-performance commercial cesium fre-
quency standard (see Table III) whose time differences are
being measured by the use of a dual-mixer measurement
system.12 A dual-mixer system computes the time difference
between two frequency standards by measuring the phase
difference between the RF outputs of the standards at a
frequency such as 5 MHz. The resolution of the phase
measurement is enhanced by down-conversion of the radio
frequencies to a much lower frequency of order 10 Hz. The
down-conversion is implemented by mixing each signal with
a frequency that is synthesized with an offset from one of the
clocks being measured. The clock used for this purpose is
generally the reference clock for the hardware as described
below. Dual-mixer systems were originally realized by analog
techniques and physical mixers, but the same principle of
enhancing the resolution of the time difference measure-

TABLE III. Characteristics of typical commercial cesium and rubidium
standards.a

Cesium standards

Parameter Standard device High performance device

Accuracy 1 × 10−12 5 × 10−13

Allan deviation@1s 1.2 ×10−11 5 × 10−12

Allan deviation@100 s 2.7 ×10−12 8.5 × 10−13

Allan deviation@104 s 2.7 ×10−13 8.5 × 10−14

Allan deviation@105 s 8.5 ×10−14 2.7 × 10−14

Allan deviation@5 days 5 ×10−14 1 × 10−14

Rubidium standards
Parameter
Initial accuracy 5 × 10−11

Frequency aging 5 × 10−11 per month,
5 × 10−10 per year

Allan deviation@1 s 2 × 10−11

Allan deviation@10 s 1 × 10−11

Allan deviation@100 s 2 × 10−12

aNotes:
1. The Allan deviation for cesium standards generally does not improve for averaging
times longer than 5 days, so that the last value in the table is the “flicker floor” for the
device.
2. Actual cesium devices typically exceed the values shown above by a factor of at
least 2 or 3. For example, compare the accuracy specification above with the values in
Table II.
3. The Allan deviation for rubidium devices does not improve significantly for averaging
times longer than a few hundred seconds, so that the last value in the table is approxi-
mately the “flicker floor” of the device.
4. The stability of rubidium standards may be degraded by fluctuations in the ambient
magnetic field and, to a lesser extent, by fluctuations in the ambient temperature.

ment after down-conversion can be realized digitally.13 The
increase in resolution that results from the lower frequency
must be balanced in practice by low-frequency 1/f noise in
the measurement system. The increase in the resolution of
the time difference measurement implies a correspondingly
increased stability requirement in the hardware before the
down-conversion process, since any delay variations in this
part of the system affect the measurements in first order.

To estimate ξ , the noise in the measurement process, we
can use the measurement hardware to measure the time dif-
ference between a clock and itself. Figure 2 shows the TDEV
of the time difference measured between a clock and itself
for two pairs of channels in the measurement system cur-
rently used at NIST. When we discuss Kalman filters below,
the analysis model will include a contribution to this noise
that arises from the measurement hardware and an indepen-
dent component that originates in the clock itself. The experi-
ment we describe here would be sensitive only to the noise
of the measurement hardware. The origin of the noise can
be an important distinction in some applications (where the
output of the clock is used to drive a frequency multiplier,
for example), but it is generally not too important for time
scales, since the algorithms almost always use measurement
strategies in which this component of the noise is small com-
pared to the other contributions from the variation in the fre-
quency and the frequency aging. A typical result would be that
ξ ≤ 10−12 s for all averaging times less than 1 or 2 days.
(Since TDEV is a measure of stability and not an indica-
tion of accuracy, it is not necessarily true that the “better”
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Averaging Time, s 

TDEV of measurement systems, common clock into two channels

1.00E-14

1.00E-13

1.00E-12

1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06

TDEV, s  

FIG. 2. (Color online) The time deviation of the measurement system, observed by measuring the time difference between the same clock connected to two
pairs of channels. The differences in the temperature sensitivities of the two channels and gradients in the room temperature contribute to the variation.

results in Fig. 2 actually represent better hardware. It is
equally possible, and probably more likely, that the two “bet-
ter” channels happen to have the same dependence on ambient
temperature changes, which is attenuated by the differencing,
while the “poorer” channels have responses that are less well
balanced at the particular time we made the measurements. In
addition, the magnitude of TDEV for any τ greater than the
minimum value is computed by averaging the data in blocks
as specified in the definition for the modified Allan variance
statistic, which is the basis for TDEV. This is an important
point, because the time-difference data are often not used by
the time scale in the same way they were averaged to com-
pute the statistic. The estimate of the magnitude of the noise
parameter in the previous sentence is a conservative estimate
based on these considerations.) The increase in the value of
TDEV for longer averaging times is probably an indication
of a response to temperature fluctuations or possibly to aging
in the measurement hardware. The temperature gradient be-
tween measurement channels is pretty small, so that the ob-
served variation is more likely to be caused by a different ad-
mittance to temperature by the different channels.

Laboratory time-scale algorithms always operate at the
low end of the range of averaging times shown in Fig. 2,
but that does not eliminate the longer term changes in the re-
sponse of the hardware, which are modeled by the algorithm
as differential frequency noise or frequency aging. These data
do not depend on the details of the clock itself, and so they set
the minimum uncertainty of any single time-difference mea-
surement for any type of clock.

The quieter pair of channels in Fig. 2 shows a TDEV that
is approximately characteristic of white phase noise at shorter
averaging times. Therefore, it is possible to reduce the im-
pact of the measurement noise in these channels by the use of
closely spaced measurements of the time difference. For the
commercial cesium device we are considering, d ∼ 0 and |y|
≤ 2 × 10−13. We will choose y = 2 × 10−13 to illustrate the
details of the design of the algorithm.

If we measure the time difference x(t) every 0.1 s, the
contributions of y and d to any time difference will be smaller
than the contribution of ξ . In other words, we are measur-
ing so rapidly that the parameters of the clock do not change
between measurements. (Note that in order to satisfy this re-
quirement, it is the frequency offset of the device and not the
variance of that quantity that is important here.) The variance
in the measured time differences is then mostly due to ξ , and
this procedure can be used to provide a real-time estimate of
this parameter. Since the variance of the noise parameter ξ

changes slowly, examining the average for outliers could also
be used as a preliminary error detection method. The distribu-
tion of the time difference measurements is approximately a
Gaussian random process in this domain, so that the standard
deviation of the mean improves as the square root of the num-
ber of measurements that contribute to it. Therefore, we can
improve the measurement noise by approximately 3.3 (

√
10)

by averaging consecutive groups of 10 measurements spaced
0.1 s apart. If we used this method as a preliminary check
for outliers, and if we set the threshold for an outlier to be
3× the standard deviation of the group, then the threshold for
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an outlier would be approximately equal to ξ . That is, if the
standard deviation of the group of 10 measurements exceeds
our estimate of the expected variance for one of them, then the
ensemble is presumed to contain an outlier. The usual strat-
egy is to examine the group for the measurement that has the
greatest offset from the mean and assume that it is the outlier.

The full improvement estimated in the previous para-
graph may not be realized in practice, since the standard de-
viation of the mean of the measurements is comparable to the
contribution of the frequency offset, y, in this case, and the
value of y may not be known a priori. (This strategy must be
re-considered when there are costs associated with the mea-
surements. Averaging groups of 10 measurements increases
the cost by a factor of 10 but decreases the noise only by

√
10,

so that the cost/benefit ratio of averaging rapid measurements
is very unfavorable. The cost/benefit ratio is even less favor-
able when the noise has flicker characteristics.)

Although some improvement would still be achieved by
averaging repeated measurements through the other pair of
channels, this strategy would not work as well as we might
wish, since the TDEV of that pair has an intermediate slope
between white and flicker noise variations. (As we discussed
above, increasing the averaging time in the flicker noise do-
main does not produce a corresponding improvement in the
estimate of the measurements.) In any case, this is not a
widely used strategy for the type of time scale we are dis-
cussing, since the contribution of the measurement noise is
already smaller than the clock noise for the range of averag-
ing times that are commonly used for time scales. However,
it is very important in many network-based algorithms, since
the measurement noise is much larger than the clock noise in
those configurations.

If we know the frequency offset of the device under test,
the averaging strategy described above can be extended by
including the deterministic frequency offset into the ensem-
ble of measured time differences. That is, before we include
them in the average time difference, we adjust the later time
differences by the time dispersion resulting from the known
frequency offset. The limitation on the averaging time is now
set by the noise in the frequency offset rather than the fre-
quency offset itself. The improvement realized by this strat-
egy is often not worth the effort, since the standard deviation
of the mean of time differences improves only as the square
root of the number of contributors to the average. In prac-
tice, any averaging scheme must also deal with outliers and
error detection, and this adds considerable complexity when
the deterministic frequency offset must be included in the es-
timation process.

In order to estimate the frequency offset of the device, we
must choose a time interval between measurements so that the
contribution of y to the measured time difference is larger than
the measurement noise. That is,

y�t 	 ξ. (7)

If we use the typical values for this configuration, the mini-
mum measurement interval is given by �t 	 10−12/2 × 10−13

= 5 s. The NIST ensemble uses a measurement interval of
720 s, so that the deterministic frequency offset would result
in a time dispersion of about 720 × 2 × 10−13 = 144 ps. For

averaging times less than about 1 day, the frequency fluctu-
ations of a cesium device are about 2 × 10−12/τ 1/2, so that
the time dispersion at 720 s due to these frequency fluctu-
ations is approximately 2 × 10−12×τ 1/2 = 54 ps. The 1 ps
measurement noise is not important in this configuration. The
contribution of the frequency dispersion is smaller than that
of the deterministic frequency, but not negligible. The domi-
nant contribution to the variance is Gaussian frequency fluc-
tuations, which will be an important assumption when we dis-
cuss ensemble algorithms.

If the time differences were measured by the use of a
simple time interval counter, the measurement noise would
be much larger – of order 0.1–0.5 ns, so that the time inter-
val between measurements would have to be larger by about a
factor of 100–500 to satisfy Eq. (7). Time scales that use this
type of hardware often use a measurement interval of 1 h to
satisfy this requirement.

If we use the parameters above, the deterministic fre-
quency offset contributes approximately 2 × 10−13 × 3600
= 720 ps at an averaging time of 1 h, and the frequency disper-
sion contributes approximately 120 ps to the measured time
difference. The ratio of the deterministic frequency contribu-
tion to the stochastic frequency contribution has increased by√

(3600/720) = 2.2 relative to the previous averaging time,
but this averaging time was driven more by the need to satisfy
Eq. (7) than to increase the significance of the contribution of
the frequency variance.

These calculations illustrate the trade-offs in choosing a
measurement interval. The estimation process is easy in this
simple case, since the contributions of both the determinis-
tic frequency and the frequency dispersion become larger and
easier to measure as the averaging time is increased, and there
is no down-side to simply making the measurement inter-
val longer and longer. This situation will change when fre-
quency aging and non-Gaussian frequency variations must be
included.

Estimating the frequency difference between two devices
situated in different laboratories is a much more difficult prob-
lem because the measurement noise is significantly larger and
the accuracy of the standards is better. It is difficult to make
the measurement noise at 1 s much less than 0.1 ns, so that
comparing primary frequency standards that differ in frac-
tional frequency by 10−15 requires about 1 day of averag-
ing under the best of circumstances. The comparisons will
become more difficult and require longer averaging times as
more accurate primary frequency devices are developed. The
increase in the averaging time needed to satisfy Eq. (7) also
will stress the requirement that the measurement noise be well
characterized as a Gaussian random process, since this as-
sumption is already not completely accurate even at an av-
eraging time of 1 day.

At the other end of the spectrum, if the channel noise
is large enough (for example, a channel that uses a packet-
switched network such as the Internet to compare two clocks)
then the channel noise will be so much larger than the con-
tribution of the frequency fluctuations of an atomic clock that
the channel noise may dominate the noise budget at all reason-
able averaging times, and Eq. (7) can never be satisfied. The
time transfer noise of the channel translates into a frequency
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FIG. 3. (Color online) The time stability (TDEV) of a voice-grade telephone
line as a function of averaging time. Note the poorer stability at periods near
1 day.

noise of order ξ /�tmax, where �tmax is the maximum averag-
ing time that can be used. In many situations, this maximum
averaging time is set by the onset of non-Gaussian processes.
From the point of view of a user there may be no advantage
to having an atomic clock as the remote reference if its fre-
quency, y, and frequency stability, η, are much better than the
effective frequency noise of the channel, ξ /�tmax, and a much
cheaper remote clock would work just as well.

For example, Fig. 3 shows the time stability (TDEV) of
a dial-up telephone line, which is typically more stable than
a packet-switched network connection. The value of TDEV
is not less than 30 μs for all averaging times and is about
100 μs for averaging time near 1 day. The time fluctuations of
the channel contribute about 10−7 to the effective frequency
noise at short periods and about 10−9 for an averaging time of
about 1 day. These values are much larger than the frequency
fluctuations of any atomic clock, so that, from the point of
view of a user who is using this channel to compare the local
clock with the remote one, the synchronization process would
not benefit from the fact that an atomic clock is being used
as the remote reference. The same comment would apply to
a network time server that uses data from a global position-
ing system (GPS) satellite. Even a simple GPS receiver deliv-
ers timing information with an uncertainty that is significantly
less than 1 μs. This is not as accurate as a directly connected
atomic clock, but is much better than the TDEV of the net-
work connection used by a user.

VII. ESTIMATING THE CLOCK FREQUENCY

The estimate of the average frequency offset over the in-
terval between the time-difference measurements would be
given by the first difference of the measurements

y (t) = x (t) − x (t − �t)

�t
. (8)

The averaging time, �t, is chosen to be long enough so that
the measurement noise make only a small contribution to the
estimate, while at the same time being short enough so that
the contribution of frequency aging to the time difference can

be ignored. In that case, the variance in these data is deter-
mined primarily by η – in other words, we are in the domain
where the variance in the time differences is characterized by
white frequency noise, and we would now average consecu-
tive frequency estimates to reduce the impact of η. The time
differences are not a Gaussian random variable in this domain
and averaging them is no longer the optimum strategy. Most
atomic-clock time scales operate in this regime.

The previous discussion assumed that the frequency fluc-
tuations of the clock were well characterized as a Gaussian
random process so that the uncertainty in the frequency offset
of the clock could be reduced by averaging consecutive first-
differences of the measured time differences. The assumption
of Eq. (8) is that the frequency aging contribution to the time
differences is small compared to the other contributions. This
was easily realized for a cesium frequency device, since our
simple model of those devices used a frequency aging term of
zero.

The situation becomes more complicated when a hydro-
gen maser is considered, since its frequency noise is small and
it often has significant frequency aging. For example, suppose
y = 2 × 10−13, d = 10−21 s−1, and η = 2 × 10−15. (Rubid-
ium atomic clocks also have significant frequency aging. The
frequency aging is about 5 × 10−11/month or 2 × 10−17 s−1

and the frequency noise is about 2 × 10−12. The frequency
noise is too large for the time scale of a national laboratory,
and the frequency aging also presents a problem because it is
not stationary.) If we use an averaging time of 720 s, which is
used in the NIST ensemble, the contribution of the frequency
aging of a hydrogen maser to the time difference is about 0.5
× 10−21 × 7202 = 2.6 × 10−16 s, which is negligible com-
pared to any other term in the expression. Thus, the use of
Eq. (8) is justified. The contribution of the frequency aging to
the measured time differences does not exceed even the mea-
surement noise until an averaging time of about 44 000 s or
about one-half of a day.

However, even when the contribution of the frequency
aging makes only a small contribution to the estimate of the
time difference, the assumption that the frequency variance
can be well characterized as a Gaussian variable is inadequate
for sufficiently long averaging times. From Eq. (2), the contri-
bution of the frequency aging will be comparable to the Gaus-
sian frequency noise for averaging times such that

d(t)�t ≈ η. (9)

If we use the values in the previous paragraph, �t = 2
× 106 s, which is about 3 weeks, and longer averaging times
would be needed in practice to increase the confidence in the
determination of the aging parameter.

The long averaging times that are needed to get a robust
estimate of the frequency aging of a hydrogen maser intro-
duce a number of practical difficulties. The first problem is
that because a robust estimate of the frequency aging requires
a significant averaging time, there is a period of time follow-
ing a cold start when the model is not correct, and predictions
of the measured time differences based on the model will have
undesirable start-up transients.

The second problem is that the frequency aging is rarely
a simple constant – it has stochastic variation as well. Some
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of this variation is a Gaussian random process and can be ade-
quately modeled by the noise parameter ζ in Eq. (3) or, equiv-
alently, by extending the definition of the frequency noise
parameter, η, to include a non-Gaussian contribution, which
may be more intuitively appealing but which is more diffi-
cult to handle statistically. However it is modeled, the fre-
quency aging is usually more complicated than the model
defined by Eqs. (2) and (3), especially at longer averaging
times.

The details depend on the device, but the conclusion that
the model equations for frequency standards are inadequate
at sufficiently long averaging times is device independent. We
would expect that ensembles of such devices would have the
same limitation – any algorithm that “averages” the frequen-
cies of real devices will have stochastic frequency fluctuations
at sufficiently long averaging times that are not easily mod-
eled. Adding additional terms to the Taylor series of the time
differences as a function of the averaging time (Eq. (1)) gen-
erally does not help. These terms depend on higher and higher
powers of �t, so that the coefficients of these terms can be es-
timated only by the use of longer and longer averaging times,
and these estimates are corrupted by the non-Gaussian varia-
tion in the lower-order terms at these longer periods.

Therefore, there is a symbiotic relationship between
time scales and primary frequency standards. The former are
needed as flywheels to provide real-time time signals and to
provide a stable short-term frequency reference to assist in the
evaluation of the systematic offsets of a primary frequency
standard, while the latter are needed to provide a frequency
reference at longer averaging times when the stochastic mod-
els of the time scale become inadequate. From the statistical
point of view, the cross-over between a clock ensemble and
a primary frequency standard is reached when the frequency
uncertainty of the primary frequency standard is comparable
to the frequency aging of the clock in the ensemble. The ac-
curacy of the NIST primary frequency standard is ≤10−15, so
that the cross-over is on the order of 1 month.

The offset between a primary frequency standard and the
frequency of an ensemble of clocks is used to steer the fre-
quency of the ensemble. We can either incorporate the offset
by adding it as an administrative change to the parameters
of the ensemble or we can use the offset to control a physi-
cal clock signal that is outside of the ensemble algorithm. I
present a few general considerations here and will discuss the
question of steering in more detail in a later section.

The International Bureau of Weights and Measures (Bu-
reau International des Poids et Mesures (BIPM) in French)
uses the former method, since its time scales have no realiza-
tion as physical outputs – the free-running frequency of the
international atomic clock ensemble (EAL – Échelle Atom-
ique Libre), which is composed of commercial cesium clocks
and hydrogen masers, is steered based on the input from pri-
mary frequency standards to produce the International Atomic
Time scale, TAI. The steering parameters are adjusted period-
ically, and are published in the BIPM Circular T.14 The cur-
rent (May 2011) frequency steering value (EAL-TAI) = 6.563
× 10−13 and the aging of the steering correction is about
−0.007 × 10−13/month during the first months of 2011 (see
Note Added in Proof at the end of this paper).

The steering applied to EAL to produce TAI is a result of
the frequency aging of EAL. To put this issue in perspective,
consider that the frequency of EAL aged by about 3.1 × 10−15

during calendar year 2008.15 (Based on the data from the first
months of 2011, the aging rate has increased significantly
since 2008.) Consider that the calculation of EAL was based
on data from about 400 clocks and that about 100 of them
were hydrogen masers, so that the masers might contribute
a weight of order 25% to EAL. If each of the masers had
a frequency aging comparable to the maser at NIST (10−21

s−1) and if the aging parameters were uniformly distributed
about 0, then the standard deviation of the aging of the en-
semble might be of order 10−22 s−1 or 3.2 × 10−15 yr−1. If
the weight of the masers was 25% of EAL, the masers would
have been responsible for a frequency aging of EAL of about
8 × 10−16 yr−1. This result is not very different from the ob-
served frequency aging during 2008. Although this calcula-
tion has many approximations and assumptions, it illustrates
the effect of frequency aging in masers and the need to model
it accurately for time scales that are designed for maximum
long-term stability.

The steering method used at NIST uses two methods.
The frequency aging of the NIST masers is estimated rela-
tive to the data from the NIST primary frequency standard,
and these estimates are inserted into the time scale, where
they are treated as constant values (see following discussion).
The estimate of the time and frequency offsets between the
output of the NIST atomic clock ensemble and TAI is imple-
mented as a steering correction applied to offset the time and
frequency of a physical clock. The steered output is used as
the time reference for all of the NIST services. The parame-
ters of the ensemble are not modified. The provisional value
for the steering correction is generally published 2 months in
advance, and the final value is published about 30 days in ad-
vance in the NIST time and frequency bulletin, which is avail-
able on the web.16 I will discuss steering algorithms in more
detail below.

VIII. CLOCK ENSEMBLES

The previous discussion outlined the general principles
of atomic clocks and how ensembles of them are likely to
behave. We now turn to a discussion of how a clock ensemble
is computed.

The models discussed in Secs. VI and VII assumed that
the clock being characterized was being compared to an ideal,
perfect reference. In practice, the clock is compared against
an ensemble of similar devices with the assumptions that (a)
the performance of the ensemble is better than any one of its
members and (b) the noise of the ensemble time used as the
reference is not correlated with the noise of the device un-
der test. The first requirement is not too difficult to satisfy
for a reasonably large ensemble, but the second one is more
troublesome, since the device being characterized is typically
also a member of the ensemble used as the reference for the
time-difference measurements. The most serious version of
this problem is when all of the clocks in the ensemble have a
common-mode offset, which cannot be detected since it can-
cels in all of the measured time-differences. Even without a
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common-mode offset, the clock being characterized always
looks too good in this situation, since it contributes data to
the ensemble average that is being used to characterize it.
This problem is especially troublesome when the ensemble
has only a few member clocks. We will return to this point
later.

There are many different ensemble algorithms, but all of
them start with the measurements of the time differences be-
tween each of the member clocks and one of them that is des-
ignated as the reference device for the hardware. In general,
the reference device is chosen for its reliability and longevity
rather than for any special statistical properties.

The frequency and frequency aging parameters of each
clock are estimated with respect to the ensemble. Since the
input data are time differences, all of these parameters have
an arbitrary additive constant that cannot be determined from
“inside” the estimation process. In practice, these additive
constants are determined from external calibration data; they
can be administratively adjusted to steer the ensemble with-
out affecting its internal dynamics. This is the method used to
realize TAI from EAL as described in Sec. VII.

The AT1 algorithm used at NIST is typical of the algo-
rithms that are used by many national laboratories, and we
will describe it in detail. A variation of the algorithm called
ALGOS is used by the BIPM to compute EAL and TAI.17

We will also discuss algorithms based on the Kalman filter
paradigm. Taken together, these two designs are the basis for
almost all of the time scale algorithms used at present.

In the following discussion, the measured time difference
between the reference clock, r, and clock, j, at epoch tk will
be designated as Xrj(k). The sign convention is that a positive
value means that the time of the reference clock is ahead of
the time of clock j. In other words, a positive value implies
that the tick of the reference clock at some epoch occurs be-
fore the tick of clock j for the same epoch. There is nothing
special about the reference clock, and its time difference is
reported by the hardware as Xrr(k) = 0. We assume that the
epochs are specified with negligible uncertainty. This is not a
difficult requirement to realize, since the frequency offsets for
atomic clocks are very small, so that small errors in the epoch
produce only a very small contribution to the measured time
differences. For example, if we take the measurement noise to
be on the order of 1 ps and the maximum offset frequency of
any clock to be ≤10−11, then specifying the epoch to within
0.1 s is adequate to have the contribution of the error in the
epoch to be of the same order as the measurement noise. The
actual accuracy in the determination of τ k is much better than
this limit.

The measurements are normally equally spaced in epoch
at an interval of τ seconds, so that the measurement epochs
can be expressed recursively by tk = tk−1 + τ . (The occur-
rence of a leap second complicates matters, since the physical
elapsed time between measurements that span the leap sec-
ond differs from the value computed from the time tags by
±1 s. This discrepancy is a one-time effect and is handled by
special code in AT1. This problem becomes more serious as
the spacing between measurements is decreased.) The current
implementation at NIST uses a value of τ = 720 s (12 min),
which easily satisfies the requirement of Eq. (7), so that we

can ignore the noise in the measurement system and Eq. (9),
so that the frequency aging can be treated as a constant during
the calculation. The BIPM uses an interval of 5 days between
measurements, partially because the noise in the time differ-
ence measurements between laboratories is much larger than
the noise of the dual mixer system used at NIST and partially
for historical reasons. The exact value used at NIST is not
critical and the value that is used is chosen mostly for compu-
tational convenience, since it is an exact decimal fraction of
an hour.

The measurement interval used by the BIPM was short-
ened from ten days to five days in 1996. Although the statis-
tics of the measurement processes could justify a shorter mea-
surement interval, this is unlikely to be realized for adminis-
trative reasons. Based on the previous discussion, we expect
that the frequency aging is constant (or 0) over the measure-
ment interval and that the variance in the measurement data
can be modeled as white frequency noise. The BIPM algo-
rithm, which does not explicitly include frequency aging in
the model, is marginal in this respect, as I have discussed in
detail in Sec. VII. The frequency aging of a hydrogen maser
is typically about 10−21 s−1. For an averaging time of five
days, the frequency aging contributes about 93 ps to the mea-
sured time difference, and the frequency of the maser ages
by about 2.6 × 10−15 over the one-month interval used to re-
port the international atomic time scale. These quantities are
small, but they are not negligible, and they become more im-
portant as longer averaging times are used. For example, the
ALGOS algorithm can estimate the frequency of a contribut-
ing clock from the most recent six months of data. For most
cesium standards, the frequency fluctuations for this averag-
ing time correspond to flicker or random-walk statistics, so
that the optimum estimate for the current interval is the value
at the end of the previous one. However, the frequency aging
of a hydrogen maser is even more important over this averag-
ing time, and treating the frequency of a hydrogen maser as
constant over this interval is not optimum.

The BIPM has done a number of studies and simula-
tions that demonstrate the impact of the aging of the hydrogen
masers that contribute to the computation of EAL.18 Includ-
ing these terms in the time scale algorithm should improve
the accuracy of EAL and reduce its frequency aging. This will
also reduce the need for applying steering corrections to TAI
and should permit TAI to realize the SI second with a much
smaller frequency offset term than is needed at present.

I will consider equally spaced measurements to simplify
the notation. However, the algorithm does not depend on
equally spaced data, and τ in the following equations can
be replaced by the actual interval between the current mea-
surement and the previous one. Even when the procedure is
designed for equally spaced measurements, different values
of τ happen occasionally when the hardware fails and some
number of measurement cycles are lost. The measurement cy-
cle is re-synchronized when the hardware is restarted, so that
the gap is an exact integer multiple of τ . The larger interval
across the gap is handled with no special processing.

The time of each clock with respect to the ensemble at
epoch tk is modeled recursively in terms of its time offset,
frequency offset, and frequency aging at the previous epoch
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tk−1 by

x̂ je(k) = x je(k − 1) + y je(k − 1)τ + 0.5d je(k − 1)τ 2.

(10)

This equation is analogous to Eq. (1), except that the param-
eters on the right-hand side are the time offset, the frequency
offset and the frequency aging, respectively, of clock j with
respect to the ensemble rather than with respect to a physi-
cal device, and the result is an estimate of the time difference
of clock j with respect to the ensemble at the current epoch
with the estimates at the previous epoch used as a prediction.
The ensemble time need not be realized in a physical device;
however, we could reverse the interpretation of Eq. (10) and
suggest that it is an estimate of the time of the ensemble rel-
ative to physical clock j. There are N equations of this type –
one for each member of the ensemble, including the hardware
reference clock. However, there are only N-1 time difference
measurements, so that these equations do not provide a unique
definition of the ensemble time.

Each one of the measured time differences can be com-
bined with the corresponding model equation for that clock to
compute a prediction of the time of the reference clock with
respect to the ensemble at the current epoch. Thus,




Xre
j (k) = x̂ je(k) + Xr j (k) (11)

is a prediction of the time of the reference clock with respect
to the ensemble at the current epoch based on the model for
clock j and the measurement of the time difference between
the reference clock and clock j. There is one of these equations
for each clock in the ensemble, including the reference clock,
where it is simply an identity, since the corresponding time
difference Xrr(k) = 0.

The first term on the right-hand side of Eq. (11) is the
estimate of the current time difference of the clock with re-
spect to the ensemble with the deterministic characteristics of
each of the member clocks determined from previous compu-
tations. If the models are an accurate representation of the per-
formance of the physical clocks, the N estimates in Eq. (11)
differ only by the Gaussian frequency noise of each clock and,
to a much lesser extent by the Gaussian noise in the measure-
ment process. (The AT1 algorithm assumes that the frequency
aging, which is included in the model for each clock, is either
a constant or zero over the measurement interval of 720 s.)
With this assumption, the provisional, statistically robust es-
timate of the time of the reference clock with respect to the
ensemble is the weighted sum of these estimates over all of
the members of the ensemble,




Xre(k) =
N∑

j=1

w j (k)



Xre
j (k). (12)

The reference clock contributes to the sum on the right-hand
side of Eq. (12) just like any other clock. As above, we could
just as easily consider this equation as providing a preliminary
estimate of the ensemble time as an offset from the physi-
cal reference clock. The weight of each estimate is computed
from the average prediction error of the clock over the previ-
ous cycles (defined below). On the assumption that the esti-

mates are normally distributed, the optimum weight for each
clock is the inverse of its variance

w j (k) ∼ 1

σ 2
j (k)

. (13)

The weights are normalized so that they sum to 1 by the use
of the normalization constant σ 2(k):

σ 2(k)
N∑

j=1

w j (k) = 1,

so that

1

σ 2(k)
=

N∑
j=1

w j (k) =
N∑

j=1

1

σ 2
j (k)

,

w j (k) = σ 2(k)

σ 2
j (k)

.

(14)

The quantity σ (k) is the standard deviation of the ensemble
at time tk. In this model, adding even a relatively poor, low-
weight clock improves the standard deviation of the ensemble
computed by Eq. (14). As we will discuss below, the weight
used in Eq. (12) for any clock may be limited by administra-
tive considerations to a value less than this.

The prediction error for each clock is the difference be-
tween the estimate computed in Eq. (11) for that clock and
the ensemble average of all of these estimates as computed by
Eq. (12):

ε j (k) = 


Xre
j (k) − 


Xre(k). (15)

The prediction error on this measurement cycle is compared
to the average prediction error over previous cycles, by the
use of the following statistic:

κ j (k) = |ε j (k)|
σ j (k)

. (16)

Case 1: κ j(k) ≤ 3. That is, the prediction error on this mea-
surement cycle is within 3 standard deviations of the average
prediction error over previous cycles. Accept the estimate of
the ensemble time from this clock and continue.
Case 2: 3 < κ j(k) < 4. The prediction error is significantly
larger than the average value over the previous cycles. De-
crease the weight of this clock in the ensemble average
(Eq. (12)). In the following expression, the original weight
computed in Eq. (14) is wj

0(k), and it is replaced in the re-
computation of the ensemble average by

w j (k) = (4 − κ j (k))w0
j (k), (17)

which de-weights the clock linearly from its value derived
from the prediction error for κ j(k) = 3 to zero when κ j(k)
= 4. Set a flag to show that the clock has been de-weighted
at this epoch. Return to Eq. (12) to re-compute the ensemble
average time with this new weight.
Case 3: κ j(k) ≥ 4. Set the weight of this clock to zero, return
to Eq. (12) and re-compute the average time of the reference
clock with respect to the ensemble. Set a flag to show that
this clock has been dropped from the ensemble average at this
epoch.
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The decision to accept a clock if its prediction error is
not greater than three sigma and reject it completely if its pre-
diction error is greater than or equal to four sigma is some-
what arbitrary. It is derived from operational experience and
is based on the usual compromise between accepting a clock
that should be rejected and rejecting a clock that should be
accepted. The intermediate case is designed to gradually de-
weight a clock whose prediction error is close to the edge of
acceptability rather than to drop it suddenly when it crosses
the threshold of acceptability. This prevents small fluctuations
in the performance of a clock that is near the reset threshold
from causing significantly larger transients in the ensemble
average.

If more than one clock satisfies the conditions of case 2
or case 3, then the ensemble average may not be correct. As-
sume that only one clock is in error, perform the operation
only on the clock with the largest value of κ and re-compute
the ensemble average by means of Eq. (12) with the modified
weight for that clock. A clock whose weight has been mod-
ified by case 2 or case 3 is not tested again on a subsequent
loop. When no further failures are detected, continue with the
subsequent section on parameter updates.

IX. ADMINISTRATIVE LIMIT ON THE WEIGHTS

The algorithm described above is potentially unstable if
one of the clocks is significantly more stable than the others so
that its prediction error is consistently smaller than the errors
of the other members of the ensemble. The same effect can
happen if the combination of the measurement noise and the
prediction errors conspire to decrease the prediction error of
one of the clocks. Since the weight of a clock in the ensemble
average is derived from its prediction error, a clock with a
small prediction error has a high weight, and this produces a
significant correlation between the time of the clock and the
average time of the ensemble. The prediction error for such
a clock is always too small, since it contributes to both terms
on the right-hand side of Eq. (15). In an extreme situation, this
can result in a positive feedback loop, in which a clock that is
initially somewhat better than the others eventually is given a
weight close to 100% and effectively takes over the ensemble.
This is especially serious in a small ensemble.

Since the positive feedback loop results from the corre-
lation between the ensemble average of the prediction errors
and the contribution of a high-weight clock, one solution is to
compute the effects of this correlation and increase the predic-
tion error (and thereby decrease the weight of the clock in the
average) to account for it.19 This method will be discussed
below in the parameter update section. A second solution is
to limit the maximum weight that any clock can have in the
ensemble average. This maximum weight for the NIST en-
semble is set at 30%. From Eq. (14), if the maximum weight
is to be limited to 0.3, then

w j (k) = σ 2(k)

σ 2
j (k)

≤ 0.3,

so that

σ j (k) ≥ 1.83σ (k).

(18)

If the σ for a clock is smaller than this limit, the weight of the
clock in Eq. (12) is set to 0.3, which effectively sets σ for that
clock to be the value calculated in Eq. (18). The normalization
constant is then re-computed with this reduced weight.

The ALGOS algorithm has a similar administrative limit.
The weight that any clock can have in that algorithm is cur-
rently limited to 2.5/N, where N is the number of clocks in
the ensemble calculation.20 In other words, the ALGOS algo-
rithm allows the best clocks in the ensemble to have a weight
that is 2.5× the value that would be used (1/N) if all of the
clocks were equal. The maximum weight of a clock in AL-
GOS is currently somewhat less than 1%.

Since the weights are normalized so that the sum is 1,
reducing the weight of a good clock below what its statistical
performance would predict implicitly transfers the weight to
poorer clocks and gives them more weight than they deserve.
The statistical performance of the scale is then not as good as
it could be if the administrative limit were not enforced. This
degradation in performance is considered an acceptable price
to pay for avoiding the possibility of having one clock take
over the scale.

The administrative limit must always be larger than 1/N,
so that the NIST administrative limit implies that the NIST
ensemble must always have more than 3 clocks. Ensembles
of less than 3 clocks are possible in principle, but they are not
used in practice because there is no method of assigning the
prediction error in case there is a problem. Even an ensemble
of 3 clocks can be marginal in this respect.

X. PARAMETER UPDATES

When the algorithm described above is finished, we have
an estimate of the time of the reference clock with respect to
the ensemble based on the measurements of all of the other
clocks whose prediction errors were not too large. We can
also consider this datum as the final, unique, realization of the
ensemble paper time as an offset from a physical clock. Since
we have measured the physical time differences between the
reference clock and all of the other clocks in the ensemble,
we can also realize the ensemble time by combining these
physical time differences with the calculated offset of the ref-
erence clock from the ensemble. Thus, the ensemble time can
be realized as a time offset from any of the physical clocks
that were used to compute it, and the ensemble frequency is
the evolution of this time difference on consecutive measure-
ment cycles. In general, none of the physical clocks directly
realizes either the ensemble time or the ensemble frequency.
Equation (12) (combined with the definition of the weights
in Eq. (14), including the administrative weighting limits) is
very important, since it defines the paper time of the ensemble
with respect to the time of a physical clock. It is a necessary
adjunct to the N-1 measured time differences. The definition
of the ensemble time is not uniquely determined without this
additional constraint.

The next step is to evaluate the adequacy of the model
that was used to estimate the time difference of each of the
physical clocks with respect to the ensemble. The previous
results already confirmed that the prediction errors of all of
the clocks that contributed to the ensemble on this cycle were
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reasonably consistent with the previous estimates of their
time, frequency, and frequency aging, where “reasonably con-
sistent” implies the evaluations based on Eq. (16) discussed
above. We now divide the residual prediction error for each
clock into two components: a deterministic value that is used
to adjust the model parameters, and a stochastic value that is
removed by averaging.

The time of the reference clock with respect to the ensem-
ble is set to the estimate computed above in Eq. (12) where the
sum uses the weight for each clock as computed by Eq. (14)
and as modified by the subsequent tests and administrative
limits,

xre(k) = 


Xre(k). (19)

This expression can be used to compute the final value for
the prediction error of each clock as the difference between
the time of the reference clock with respect to the ensemble
predicted by clock j and the ensemble average of these pre-
dictions from Eq. (19):

ε j (k) = 


Xre
j (k) − xre(k). (20)

Equation (20) is evaluated for every clock in the ensemble, in-
cluding the reference clock, which is not treated in any special
way. These updated estimates will be identical to the provi-
sional values if the prediction errors of all of the clocks were
within the acceptable limit of three times the value for the cor-
responding σ so that no clock was de-weighted because it was
close to the maximum threshold or reset because its prediction
error exceeded the threshold.

The first step in the parameter update process is to deal
with any clock whose weight was reduced to zero because
its prediction error was too large. We model these clocks as
having had a simple time step since the last computation. We
adjust the time of the clock with respect to the ensemble so
that it matches its value based on its current measured time
difference. If clock m was reset on this cycle, then

xme(k) = xre(k) − Xrm(k). (21)

We do not modify its other parameters on this cycle. If this
assumption is accurate, then the clock will return to the en-
semble with its parameters unchanged on the next measure-
ment cycle and its prediction error will return to be within the
expected range.

If the error is not due to a simple time step, then the pre-
vious action is unlikely to fix the problem. For example, if
the frequency or the stability of the clock changed since the
last measurement cycle, then its behavior probably will not
be modeled by a single time step. It will most likely be reset
repeatedly on subsequent measurement cycles, which effec-
tively removes it from the ensemble, since its weight is set to
zero repeatedly. This is generally an indication of a hardware
failure, and the ensemble simply calls for human assistance
but continues to run with the failed clock effectively removed
from the calculation. This strategy is a necessary consequence
of the fact that AT1 is a real-time ensemble; more sophisti-
cated responses are possible for an ensemble that does not run
in real time. For example, the parameters of the clock could

be administratively adjusted based on other data and the scale
can be re-computed.

The next step in the process is to update the parameters
of each clock that was not reset on the current measurement
cycle.

(1) The time of each clock with respect to the ensemble is
set to the computed time of the reference clock with re-
spect to the ensemble and the measured time difference
between each clock and the reference clock

x je(k) = xre(k) − Xr j (k). (22)

This updated time is used in the following calculation.
Equations (21) and (22) are identical – the time of a
clock with respect to the ensemble is a direct conse-
quence of the definition of the ensemble and the mea-
sured time differences, and this is true whether or not the
clock behaved as we predicted it would based on previ-
ous data. This procedure implicitly assumes that a mea-
surement of the physical time difference between two
clocks is an accurate measure of the difference in the
time state between them. In other words, that the mea-
surement noise is negligible. The Kalman time-scale al-
gorithm, which we will discuss below, relaxes this re-
quirement.

(2) The frequency of the clock with respect to the ensemble
is set in two steps. The first step estimates the frequency
over the time interval since the last measurement cycle
by means of a simple first-difference of the times of the
clock with respect to the ensemble

f je(k) = x je(k) − x je(k − 1)

τ
. (23)

Based on the time interval between measurements and
the model of the clock, the frequency estimated by Eq. (23) is
assumed to have a variance that is due only to white frequency
noise, because the measurement interval has been chosen to
be long enough so that the measurement noise is much smaller
than the frequency noise of the clock and short enough so
that the contribution of the frequency aging term to the time
differences can be considered as a constant that cancels in the
difference. Therefore, the average of these calculations is an
unbiased estimate of the frequency of the clock with respect
to the ensemble. On the other hand, the number of frequency
estimates included in the average must be limited because we
will not satisfy the requirement that the frequency aging is a
constant or that the frequency variance can be characterized
as white frequency noise if we go back too far in time. Since
the algorithm is implemented recursively, we use a recursive
implementation of the finite average, which “forgets” older
frequency estimates with a dimensionless time constant wy.
We then add the contribution of the frequency aging to obtain

y je(k) = w y y je(k − 1) + f je(k)

1 + w y
+ d je(k − 1)τ,

y je(k) = y je(k−1)+ 1

1+w y
( f je(k)−y je(k−1))+d je(k−1)τ.

(24)
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The second form of Eq. (24) is algebraically equivalent to the
first form, but casts the frequency update in a form that will
be easier to compare to the Kalman formalism to be discussed
below. In the second form of Eq. (24), the first term is the pre-
vious estimate of the frequency and the second term is the
weighted difference between this estimate and the value com-
puted on the current cycle. The weighting factor is defined as
follows.

The time constant used in the exponential filter above is
determined from the statistics of the clock performance as the
time interval over which the frequency noise can be consid-
ered as having a white spectrum. If Tj is the time constant for
clock j in seconds determined in this way, then

w y = Tj

τ
. (25)

The time constant is about 4 days (wy = 480 measure-
ment cycles) for a standard-performance cesium standard and
about 10 days (wy = 1200 measurement cycles) for a high-
performance device when the standards are operated in an un-
controlled temperature environment. The performance is sig-
nificantly better if the environmental parameters (mostly am-
bient temperature) are controlled, and the time constants can
be increased in this case. The effect of Eqs. (24) and (25) is to
partition the measured variance in the frequency of the clock
with respect to the ensemble: frequency fluctuations with pe-
riods less than Tj are attenuated, while those greater than this
time modify the frequency of the clock used to predict the
time difference on future measurement cycles. This strategy
is not optimum if the frequency fluctuations over the averag-
ing time τ are characterized by a random walk, which is the
reason that the EAL algorithm uses a different frequency esti-
mator in which the frequency for any interval is the last value
at the end of the previous one.

The update of the prediction error is also computed in two
steps. The first step computes the integrated prediction error
for clock j over the last 24 h ending at the current time tk:

Sj (k) =
tk∑

tm=tk−24h

ε j (tm), (26)

where the prediction error for each cycle given by Eq. (20).
This value is corrected for the correlation effect discussed
above21 and the result is passed through an exponential filter
with a fixed time constant of 31 days,

ws = τ

86400

1

1 − w j (k)
, (27)

σ 2
j (k) = 31σ 2

j (k − 1) + ws S2
j (k)

31 + ws
. (28)

The first expression in Eq. (27) scales the measurement in-
terval measured in seconds to a fraction of a day. The sec-
ond term increases the effective prediction error for a clock
that has a large weight in the ensemble average. As we dis-
cussed above, the prediction error is always too small for such
a clock, since it makes a significant contribution to the en-
semble that is also being used to evaluate its time difference.
Since the maximum weight of a clock in the ensemble is lim-

ited to 0.3, the correlation correction in Eq. (27) increases the
observed variance by a factor of up to 1.43. Equation (28) is
similar in form to the first term in the first form of Eq. (24),
so that it could be manipulated to obtain an equation analo-
gous to the first term in the second form of that equation. As
in Eq. (24), this form emphasizes the role of the “innovation”
– the difference between the current result and the previous
running average.

The time constant of 31 days is an administratively cho-
sen constant that is based more on experience than on a rig-
orous analysis. The value of this time constant partitions the
changes of the prediction error. Long-period changes in the
prediction error modify the sigma of the clock, which affect
both its weight on each cycle and the threshold for the reset al-
gorithm. Shorter- period changes in the prediction error have
less effect on the sigma. The result is that slow changes in
the prediction error affect the weight of the clock, while more
rapid changes are more likely to result in a reset.

The AT1 algorithm does not estimate or update the
frequency aging for the reasons discussed above. The aging
parameter is generally 0 for cesium standards and must be
determined outside of the algorithm for hydrogen masers
or rubidium standards. Although the frequency aging for a
hydrogen maser is typically on the order of 10−21 s−1, it is
very important to include it in the model. The contribution of
the aging term to the model of the measured time difference
is very small over the measurement interval used at NIST,
and setting it to zero does not impact the prediction error or
the weight of the clock. However, the frequency estimates
will by systematically wrong by a small amount, and the
ensemble time will exhibit frequency aging as a result.

XI. SUMMARY OF THE AT1 ALGORITHM

The AT1 algorithm uses the prediction error of each of
its member clocks in a number of different ways. Large, short-
term prediction errors are used for error detection and are used
either to reduce the weight of a clock in the ensemble average
or to remove it entirely if the prediction error is large enough.

Prediction errors that do not trigger the reset procedure
can modify both the model parameters of a clock through
the parameter update procedure (Eqs. (21)–(24)) and the
weight of the clock through Eq. (28). The time constant
in Eq. (28) is generally longer than the time constant of
Eq. (24) for most masers and for cesium standards when
the environmental parameters are not well controlled, so that
the parameter update procedure tends to modify the model
parameters of a clock so as to track the changes in the pre-
diction error faster than the weighting algorithm will de-
weight the clock. The time constants for cesium standards in
Eq. (24) can be significantly longer than the value in Eq. (28).
The relationship between these time constants is a conse-
quence of the assumption that intermediate-term prediction
errors are to be modeled as frequency changes rather than as
changes in the long-term weight of the clock. The frequency
changes are further divided into short-term random variations,
which are attenuated, and longer-term variations that mod-
ify the model. The transition between the two responses is
defined by Eqs. (24) and (25). The actual values used in any
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configuration must be determined based on a consideration of
the underlying noise type as a function of averaging interval.

The AT1 ensemble time is defined so that the weighted
sum of the differences between the predicted and measured
time differences of the members of the ensemble that are not
reset will be zero. This is the appropriate method for com-
bining the estimates from the member clocks, given the as-
sumptions that were used to construct the clock models. The
weighted average will attenuate the random contributions to
the measured time differences, but it cannot eliminate them
completely. (In the simple case where the random contribu-
tions are just white noise and where all of the clocks have
equal weight, the improvement is just proportional to the
square root of the number of clocks in the ensemble. Mak-
ing a significant improvement to an ensemble is therefore an
expensive business.) In addition, it cannot cope with inade-
quacies in the clock models themselves. The AT1 ensemble
time will therefore behave very much like a single clock with
parameters derived from the weighted average of its members.
We would expect that the AT1 ensemble time would have sig-
nificant variation at longer periods because its member clocks
do too, and this is observed in practice.

The performance of the AT1 algorithm is determined by
the assumptions that are used to justify Eq. (12), which com-
putes the ensemble time with respect to the physical refer-
ence clock as the weighted sum of the estimates of each of
the members. The calculation will do the wrong thing if the
distribution of time differences is biased because of a corre-
lation among high-weight clocks or if the distribution has a
mean of zero but a bi-modal distribution. In both of these sit-
uations, the algorithm may choose to reset the wrong clocks.
Even when the assumptions of Eq. (12) are well justified, the
interaction between the inevitable measurement noise and the
weighting algorithm means that the time scales computed by
two measurement systems observing the same physical en-
semble of clocks will slowly diverge in time and frequency.
Based on our experience at NIST, this divergence can be ap-
proximated as a differential frequency aging of the two nom-
inally identical time scales of about 4 × 10−23 s−1 (about
10−16/month). The variance of the frequency aging can be ap-
proximated by flicker frequency modulation.

The performance of AT1-type algorithms at longer pe-
riods could be enhanced in principle if the calculation were
done retrospectively rather than in real time. The ALGOS al-
gorithm, which is very similar to AT1 and which is used by
the BIPM to compute EAL and TAI is computed retrospec-
tively for this reason. However, the calculation of EAL has
not solved the problem of long-term frequency aging, and it
depends on data from the primary frequency standards to es-
timate and remove it. In addition, a retrospective scale is not
useful for a timing laboratory, which must provide time and
frequency services in real time. Many of the current users of
time and frequency information (navigation, telecommunica-
tions, . . . ) depend on real-time data, so that real-time ensem-
bles are likely to become more important in the future.

An important weakness of AT1-type algorithms (espe-
cially, the real-time implementations of the procedure) is
that the model equations and the ensemble calculation favor
clocks with better short-term stability even if those clocks

have significant longer-term frequency aging. The Kalman al-
gorithm is intended to address this shortcoming, and we will
now discuss a generic form of this method.

XII. THE KALMAN TIME-SCALE ALGORITHM

In this section, we discuss a “generic” Kalman time-scale
algorithm. Our discussion is based on Gelb.22 A number of al-
gorithms of this type are described in the literature.23, 24 They
all share the same basic principles, although they vary in de-
tail, especially in estimating the weights assigned to the mem-
bers of the ensemble and in how they deal with outliers and
clock errors.

The Kalman time scale algorithm uses the same model
equations that we presented above in Eqs. (1)–(3). The model
is usually presented by the use of matrix formalism. We define
a 3-component state vector: Sj(k) = (xj(k), yj(k), and dj(k)),
where the components are the time difference, frequency dif-
ference, and frequency aging for clock j with respect to the
ensemble at epoch tk as before. The noise parameters also
are expressed as a 3-component vector: Nj(k) = (ξ j(k), ηj(k),
ζ j(k)). The evolution of the state vector as a function of time
is determined by the 3 × 3 transition matrix, �:

� =

⎡
⎢⎣ 1 τ τ 2

2

0 1 τ

0 0 1

⎤
⎥⎦ (29)

With this notation, Eqs. (1)–(3) for clock j are expressed as

�Sj (k) = ��Sj (k − 1) + �N j (k), (30)

where τ ≡ �t = tk − tk−1. It is convenient to choose a con-
stant time interval between measurements, but this is not a re-
quirement of the algorithm. There are N such equations, one
for each clock in the ensemble. We can combine all of these
N equations into a single matrix equation by defining a 3N-
component vector for the state S and a 3N-component vector
for the noise parameters N. Thus,

�S = [x1, y1, d1, x2, y2, d2, . . . , xN , yN , dN ], (31)

�N = [ξ1, η1, ζ1, ξ2, η2, ζ2, . . . , ξN , ηN , ζN ]. (32)

The transition matrix for the entire ensemble is composed of
N 3 × 3 sub-matrices along the diagonal, with zeroes every-
where else. Each sub-matrix is of the form of Eq. (29). The
transition matrix is a function only of the time interval be-
tween measurements.

We observe the state of the system at time tk. The Kalman
formalism could support observations of any of the compo-
nents of the state vector, but the most common arrangement
is the situation we considered above: a measurement of the
time differences between each of the clocks and one of them,
which is designated as the reference clock for the hardware.
The hardware reference clock was not handled differently
from any other clock in AT1, but the situation is somewhat
more complicated here, as will be shown below.

Suppose that the reference clock is clock 1 and that there
are 3 clocks in the ensemble, so that the state vector has 9
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components. There are 2 measured time differences: x1−x2

and x1−x3, so that the measurement vector has 2 components.
The measurement vector O is related to the state vector S by
the vector equation,

�O(t) = H �S (t) + �v(t), (33)

where the vector v specifies the noise of the measurement pro-
cess, which is assumed to be a white noise process. Note that
this formalism supports two contributions to the white phase
noise of the time differences: the phase noise of the clock it-
self, ξ , and the phase noise of the measurement process, v.
This is an important difference between this type of algo-
rithm and the AT1 algorithm discussed above. The Kalman
algorithm allows for the possibility that we do not observe the
state directly – we see it only through Eq. (33) with the addi-
tional noise vector v. The AT1 algorithm implicitly assumed
that this white phase noise contribution was negligible and
that the measurements directly observed the time differences
of the state vectors themselves.

The H matrix specifies the relationship between the state
vector and the observations, and it has a simple form when
the observations are the two time differences specified above
for the 3-clock ensemble

H =
[

1 0 0

1 0 0

−1 0 0

0 0 0
0 0 0

−1 0 0

]
. (34)

The noise of the measurement process depends on exactly
how the measurements are made. In the simplest case, we
have two identical time-interval counters that measure the two
time differences, x1–x2 and x1–x3. The variance of the mea-
surement noise is the same in both channels, but the noise in
each channel is not correlated with the other one. The vector
v is simply

�v = σv

[
1

1

]
, (35)

where σ v is the magnitude of measurement noise in each
channel of the time difference hardware. (Although clock 1 is
used to measure the time difference in both channels, Eq. (35)
represents the measurement noise of the channel, rather than
the noise of the clock.) Since the two channels are not corre-
lated, the expectation values of the cross terms are 0. The co-
variance of the measurement noise in the simple case is given
by

Cv (t) = E[�v (t) �vT (t)] = σ 2
v

[
1 0

0 1

]
. (36)

If the time differences are measured by a dual-mixer config-
uration, the signal from each clock is mixed with a local os-
cillator and the time difference between two signals is then
measured at the lower intermediate frequency output of the
two mixers. Again, we assume that all of the measurement
channels are identical, so that the diagonal elements of the
covariance matrix are of the form

(x1 − x2) (x1 − x2) = x2
1 + x2

2 = 2σ 2
v ,

while the off-diagonal cross terms are of the form

(x1 − x2) (x1 − x3) = x2
1 = σ 2

v ,

so that the covariance matrix is

Cv (t) = σ 2
v

[
2 1

1 2

]
, (37)

where we have assumed that the expectation value of the cross
terms xjxk is zero for all j and k. The covariance in Eq. (37)
includes cross-terms because each signal is mixed with the
local oscillator before the measurement, which adds noise that
is not present in the simpler model that yielded Eq. (36). In
both cases, the covariance of the measurement process is a
characteristic of the system and has no time dependence.

The covariance of the clock noise vector N is defined in
the same way and is computed in terms of the white noise pa-
rameters ξ , η, and ζ for each clock. The noise parameters of
each of the clocks are assumed to be uncorrelated, so that the
cross-products of terms from different clocks are all 0. (This
assumption is identical to the assumption that justified the
computation of the ensemble average time in AT1. Both algo-
rithms will do the wrong thing when this is not correct.) The
covariance matrix of the noise vector is computed as above

=
Q(t) = E[ �N (t) �N T (t)]. (38)

The Q matrix is initially diagonal; the diagonal elements q1,
q2, q3 are the variances of the noise parameters ξ , η, and ζ ,
respectively. It does not depend on time. However, the co-
variance matrix evolves during the interval between measure-
ments and its off-diagonal elements become non-zero. This
is simply a mathematical representation of the fact that the
variance of the frequency of the device contributes to the time
difference, etc. If the interval between measurements is τ , the
covariance matrix evolves during that interval according to24

C =
∫ τ

0
φ(t)QφT (t)dt. (39)

Using φ from Eq. (29), the covariance matrix is symmetric.
The diagonal elements are

C11 = q1τ + q2
τ 3

3
+ q3

τ 5

20
,

C22 = q2τ + q3
τ 3

3
,

C33 = q3τ,

(40)

and the cross-terms are

C12 = C21 = q2
τ 2

2
+ q3

τ 4

8
,

C13 = C31 = q3
τ 3

6
,

C23 = C32 = q3
τ 2

2
.

From the Allan variance perspective, the q1, q2, q3 parameters
represent the white frequency noise, random-walk frequency
noise, and random-run frequency noise, respectively.

We now consider the evolution of the state of the ensem-
ble, starting at time tk−1. We first estimate the state of the en-
semble at time tk just before the measurements are made. This
estimate is denoted by Ŝ(k-). The estimate of the state of the
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ensemble immediately after the measurements is denoted by
Ŝ(k+). We look for an estimate of the ensemble state immedi-
ately after the measurements are made as a linear combination
of the state just before the measurements and the measure-
ment data. That is,

Ŝ (k+) = K ′
k Ŝ(k−) + K k O(k), (41)

where K′ and K are weighting matrices (to be defined below)
applied to the previous state and the current measurements,
respectively, at the epoch tk.

The estimates of the states before and after the measure-
ment can be divided into two pieces: the true state at time tk
and the prediction error of the state just before and just after
the measurement. The error in each estimate is denoted by the
tilde,

Ŝ (k+) = S(k) + S̃(k+), (42)

Ŝ(k−) = S(k) + S̃(k−). (43)

Replace O(k) in Eq. (41) with Eq. (33), and then replace the
left side of Eq. (42) with Eq. (41). Then replace S(k−) with
Eq. (43). Re-arrange the terms to get an estimate of the pre-
diction error just after the measurements have been performed
(the matrix 1 is the identity matrix),

S̃(k+) = (
K ′

k + Kk Hk − 1
)
S(k) + K ′

k S̃(k−) + Kkvk .

(44)

Find the conditions needed to make the expectation value of
this prediction error equal to zero. The expectation value of
the measurement process, which is the third term on the right
side is 0 by assumption. The expectation value of the second
term will be zero if (and only if) the prediction of the state just
before the measurement was unbiased. If these two conditions
are satisfied, then the expectation value of the entire expres-
sion will be zero if the expectation value of the first term is
zero, which defines a relationship between the two weighting
matrices,

K ′
k = 1 − Kk Hk . (45)

If we substitute this value into Eq. (41), we obtain

Ŝ(k+) = Ŝ(k−) + Kk[O(k) − Hk Ŝ(k−)]. (46)

The first term is the value of the state just before the mea-
surement is made. It is computed from the state at time
(k−1) and the matrix � defined above. The second term is the
difference between this value and the observations. In other
words, the second term is the difference between what we ex-
pected to find based on the previous state and what we actu-
ally measured. It is often called the innovation for this reason,
and the parameter Kk is the Kalman gain matrix – the weight
that scales the difference between what we expected to find
at time tk based on the previous state and what we measured.
The previous state vector is multiplied by the measurement
matrix H so that the two terms in the brackets are the same.
In the case we are considering, H extracts the differences in
the time states of the various clocks from the state vector S,

which is what we have measured in O. However, the formal-
ism would support other types of measurements.

We choose Kk to minimize the weighted scalar sum of
the diagonal terms of the covariance matrix of the prediction
error just after the measurements have been performed. The
result for the Kalman gain is in the literature,

Kk = PK (−)H T
k

[
Hk Pk(−)H T

k + Cv
]−1

, (47)

where Cv is the covariance matrix of the measurement noise
v (Eq. (36) or Eq. (37)), and Pk(-) is the covariance matrix of
Ŝ(k−). It is the sum of two terms: the sum of the evolution
of the covariance matrix from the previous iteration, C(n−1)
and the contribution from the current calculation, Q. Thus,

PK (−) = φC(n − 1)φT + Q. (48)

Using the Kalman gain and the previous covariance matrix,
the updated covariance matrix is given by

C(n) = [1 − Kk H ] PK (−). (49)

This result is mathematically complex and physically
obscure.

XIII. A SIMPLE EXAMPLE OF THE KALMAN
ALGORITHM

I will demonstrate the operation of the Kalman algorithm
using a simple example. Suppose that we wish to compare two
systems each of which can be characterized as having only
a single parameter in its state. For example, a measurement
of the time difference between two clocks whose frequencies
are identical and have no deterministic or stochastic varia-
tion. The Kalman model is particularly simple in this case:
the time differences are modeled as arising only from white
phase noise and do not depend on the time of the measure-
ments or the interval between consecutive measurements. If
x(tn) is the time difference between the two devices at epoch
tn, then

x (tn) = x (tn−1) + ξ (tn−1), (50)

where ξ is a white noise process with zero mean and variance
Q, so that its auto-correlation is

Rξ (tn, tn−1) = Qδ(tn − tn−1) (51)

for all n. From Eq. (48), the evolution of the covariance is

PK (−) = C (n − 1) + Q. (52)

We measure the time difference, z(tn), between the two de-
vices at time tn and the measurement process has a noise v(tn),
which is a zero-mean random process with variance M = σ v

2.
The matrix H is simply 1 in this case, so that

z (tn) = x (tn) + v (tn) . (53)

If we substitute Eq. (52) into Eq. (47), the Kalman gain is
given by

Kk = PK (−)

PK (−) + M
= C (n − 1) + Q

C (n − 1) + Q + M
. (54)
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If we substitute this value for the Kalman gain into Eq. (46),
we obtain a prediction of the current time difference state

x̂ (tn) = x (tn−1) + C (n − 1) + Q

C (n − 1) + Q + M
[z (tn) − x (tn−1)].

(55)

Equation (55) can be re-arranged to yield

x̂ (tn) =
{

1

C (n−1) +Q
+ 1

M

}−1 {
− x(tn−1)

C (n−1) +Q
+ z(tn)

M

}
,

which illustrates that the updated state is the weighted combi-
nation of two independent statistical variables – the previous
state and the current measurement. From Eq. (49), the updated
covariance is

C(n) = M

C(n − 1) + Q + M
[C(n − 1) + Q]

=
{

1

C(n − 1) + Q
+ 1

M

}−1

. (56)

The fraction in the first form of Eq. (56) is always less than
1, so that the process of making the measurement reduces
the covariance. The improvement in the covariance becomes
smaller and smaller as the measurement noise increases, and
becomes negligible when the measurement noise is much
larger than the inherent noise of the devices themselves. The
second form of Eq. (56) shows that the reciprocal of the up-
dated variance is the usual combination of the variances of
two statistically independent random variables.

XIV. THE COMPOSITE CLOCK ALGORITHM

The composite clock algorithm is used to characterize the
clocks in the satellites and at the monitoring stations of the
global positioning system. It is based on the Kalman formal-
ism we have discussed above, but it is more complex because
it also estimates the orbital parameters of the satellites and a
number of other parameters. I will focus only on the portion
of the algorithm that estimates the clocks.

The input data to the algorithm are pseudo-ranges: the
measured time differences between the signals transmitted
from each of the satellites to each of the ground stations in
turn as the satellite comes into view of each of the stations.
The model assumes that each time difference is an estimate
of the states of the clock in the satellite and the clock in the
ground station and has an additional, uncorrelated random
noise contribution as described by Eqs. (33) and (34). The ran-
dom noise of the measurement process is assumed to have
zero mean and known covariance.

All of the clocks in the ensemble are modeled using a
Kalman algorithm as in Eqs. (29)–(32) without the frequency
aging terms. Thus, the transition matrix, φ is 2 × 2 rather
than 3 × 3 as in the previous discussion, and the other vectors
are correspondingly smaller. As we have discussed above, the
impact of frequency aging becomes more important at longer
averaging times, so that ignoring this term can limit the max-
imum averaging time that can be used by the estimator. The
composite clock algorithm currently computes a new estimate

every 15 min, so that the effect of frequency aging is not a
problem.

The algorithm considers that the state of each clock is a
sum of the state of an ideal clock and the difference between
the actual state of the clock and the state of the ideal one.
Since the ideal clock is common to all of the members of the
ensemble, it cancels in the time differences, and the Kalman
equations of the reduced clocks are unchanged by subtracting
the state of this ideal clock. In fact, subtracting ANY time
value from the states of all of the clocks leaves the ensemble
equations unchanged. This is a direct result of the fact that the
ensemble algorithm uses the time differences between pairs
of clocks; all time-scale algorithms share this property.

In order to resolve this ambiguity, the algorithm defines
the implicit ensemble mean, which is the weighted average of
the times of the corrected clock estimates.26

The sum that is used to construct the implicit ensemble
mean is similar in spirit to the ensemble time defined in the
AT1 algorithm, but the weighting algorithm is different. In
both cases, the mean is constructed after removing the deter-
ministic component of the time of each clock, and the differ-
ences between the implicit ensemble mean and the corrected
time of each clock is just white noise in principle. There-
fore, no clock exactly realizes the ensemble mean in princi-
ple, although the differences between the implicit ensemble
means realized by each of the member clocks are small if the
Kalman state parameters accurately reflect the performance
of the clocks.

Since the implicit ensemble mean is the weighted aver-
age of several clocks, its stability should be better than any
of the contributing members in principle. However, we would
expect that it would share the long-period divergence of other
time scales for the same set of reasons – the lack of perfect
modeling of the long-period parameters of the clocks, the in-
teraction between the measurement noise and the prediction
error, the failure of the assumption that the measurement noise
is a white phase-noise process, etc. The last of these problems
can be particularly troublesome, since the pseudo-range mea-
surements are affected by the tropospheric refractivity and by
multi-path reflections at the receiver. Both of these effects can
be difficult to estimate accurately.

The long-period stability and accuracy of the composite
clock algorithm is maintained by steering the ensemble time
to Coordinated Universal Time (UTC) as maintained at the
U.S. Naval Observatory (USNO). In addition, a prediction of
the time difference between the composite clock scale and
UTC(USNO) is broadcast by each satellite. I will discuss the
details of steering algorithms in a subsequent section.

XV. COMPARING THE KALMAN AND AT1 TIME
SCALES

An important point in the derivation of the Kalman
method is the discussion that derived Eq. (46) from Eq. (44).
The derivation depends on the fact that the expectation value
of the prediction error just before the measurement was un-
biased. This requirement is difficult to realize and even more
difficult to verify. To complicate matters, it is quite likely that
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a biased estimate at any iteration will propagate into the future
without administrative intervention.

The generic Kalman algorithm has nothing equivalent to
the reset procedure of AT1. This is not particularly surpris-
ing, since a reset procedure is a non-statistical administrative
intervention in the functioning of the scale that is justified on
pragmatic grounds and will therefore always be outside of any
purely statistical discussion. Jones and Tryon (op. cit) include
a reset procedure in their version of the Kalman time scale that
is based on the innovation and that is similar in spirit to the
AT1 method based on the prediction error that is described
above. However, the implementation is much more compli-
cated, since a clock that is reset must also be removed from
the covariance matrix. A reset of the reference clock also re-
quires special handling in their formulation. No special han-
dling is needed for this situation in AT1.

The reset procedure in AT1 modeled a large prediction er-
ror as a single time step and most other real-time algorithms
do this as well. The algorithm drops the clock from the ensem-
ble average, resets its time to match the predicted time offset
and does not update its other parameters (frequency offset,
etc.). The result is unambiguous, but might not be correct; the
assumption that the large prediction error was due to a single
time step is only one of the many possibilities of what might
have happened. It is somewhat more difficult to do the same
thing in a Kalman scale implementation. It is straightforward
to adjust the time state of the clock to reduce the prediction of
the time error to zero, and to set the appropriate parameters in
the Kalman gain matrix to zero to prevent the measurements
from updating the other components of the state vector for that
clock. It is less clear how to deal with the covariance matrices,
which describe properties of the ensemble as a whole. Jones
and Tryon (op. cit.) allow for the possibility that the reset was
due to a frequency step by increasing the covariance matrix
elements for the frequency state so that the clock will be less
likely to be reset on a subsequent computation cycle. The in-
tent is for this adjustment to allow the algorithm to “learn” the
new frequency over the next cycles.

XVI. THE KAS-2 KALMAN ALGORITHM

Since both the AT1 family of time scales and the Kalman
family operate on time differences between the member
clocks, the absolute times and frequencies of the clocks and,
therefore, the time of the ensemble itself are free parameters.
The AT1 algorithm provides an unambiguous, unique defini-
tion of the paper time of the ensemble as the time that makes
the weighted average of the predictions of each of the clocks
equal to zero on the average (apart from random noise). Nei-
ther the generic Kalman algorithm nor the Jones and Tryon
variant have anything equivalent to this definition of the en-
semble. Each clock is modeled with respect to the ensemble,
but there is no prescription for combining the estimates to
form a single ensemble time. I will discuss this point in more
detail in Sec. XVII.

The deficiencies of the default Kalman algorithm are ad-
dressed in the KAS-2 (Ref. 25) implementation by adding ad-
ditional constraints to the Kalman solution so as to provide
an unambiguous definition of the ensemble parameters. The

constraints are derived from the principle that the deviations
of the times of the clock from a “perfect” device are random
and uncorrelated and that the mean of the noise estimates is
zero. This principle is applied to each component of the state
of the clocks, so that there are three sets of weights, for the
time state, the frequency state, and the frequency aging state.
Since the mean of the deviations of the real ensemble states
are not equal to zero in general, imposing this condition intro-
duces correlations among the clock parameters.

The KAS-2 weights are chosen so as to minimize the
noise of the time scale and subject to the additional condi-
tion that the sum of the weights must be unity. The details are
similar to the weighting procedure in AT1: the weight of each
component of the state of each clock in the ensemble mean
is proportional to the inverse of the expectation of its cor-
responding noise parameter. The normalization requirement
scales these weights by the sum of all of them as in AT1.

The KAS-2 algorithm includes a limit on the maximum
weight that is implemented in very much the same way as
AT1: if the calculated weight exceeds the maximum, it is
limited to the maximum value and the other weights are re-
computed with this limit. The use of a limit on the weights
has the same advantages and disadvantages as in AT1: the
method prevents the positive feedback loop in which a good
clock eventually takes over the scale, but the performance is
degraded because limiting the weight of a good clock implic-
itly gives poorer clocks more weight than they deserve.

XVII. COMPARING AT1 AND KALMAN ALGORITHMS

The long-term stability of the AT1 algorithm (and related
algorithms such as ALGOS) is degraded by a clock with very
good short-term stability and significant long-term frequency
aging because the weight of the clock is largely determined by
the short-term stability and because it is difficult to estimate
an accurate value for the aging parameter in the presence of
Gaussian and random-walk frequency noise. The Kalman for-
malism can address this possibility by explicitly including a
noise parameter in the model for the frequency aging, which
adds a consideration of the longer term noise performance to
the model. The Kalman algorithm of Jones and Tryon (op.
cit.) and the Kalman-based composite clock algorithm26 used
to estimate the clocks in the global positioning system do not
use this parameter, but KAS-2 does (op. cit.). However, esti-
mating the variance of the frequency aging is a difficult busi-
ness because it requires long averaging times and because the
aging usually is not stationary, so that the cure does not work
as well in practice as we might expect.

A basic parameter in both the AT1 and Kalman algo-
rithms is the innovation – the difference between the predic-
tions of the model of the clocks in the ensemble and the mea-
surements of the actual clock time differences. For example,
Eq. (46), which scales the innovation by the Kalman gain fac-
tor, is formally very similar to Eq. (24) for the update of the
frequency state in AT1.

This formal similarity can be extended by identifying
the relationships between the weights used in AT1 and the
weights used in a Kalman algorithm.27 However, this for-
mal similarity hides some significant differences. At the most
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basic level, the weights in AT1 for the time state of each clock
must satisfy a sum rule (Eq. (14)), and the weights in AT1 for
the frequency update (Eqs. (24) and (25)) are constants that
are determined administratively and are not adjusted by the
algorithm. However, the definition of the ensemble is also dif-
ferent in the two time-scale algorithms.

To see this difference, we first compute the difference in
the time states between two clocks with indices m and n in an
AT1 ensemble. Using Eq. (22) twice, we obtain

xme (k) − xne (k) = {xre (k) − Xrm(k)} − {xre (k) − Xrn(k)}

= Xrm (k) − Xrn(k), (57)

where the upper case symbols are the measured hardware time
differences and the lower case symbols are the times with re-
spect to the ensemble, e. The hardware time differences are
given by the difference of the physical times

Xrm = Xr − Xm,

Xrn = Xr − Xn, (58)

so that the difference of the ensemble time states is exactly
equal in magnitude to the difference of the hardware time
measurements

xme (k) − xne (k) = −{Xn(k) − Xm(k)} . (59)

Since Eq. (21) is the same as Eq. (22), this equivalence is
true even if a clock was reset because of a large prediction er-
ror. However, if we use Eq. (46) to compute the difference in
the time states between two clocks in the Kalman scale, it is
clear that the difference in the two time states will not, in gen-
eral, be the same as the measured hardware time difference
between the two clocks.

The reason that the difference in the time states in the
AT1 time scale is the same as the difference in the physical
time difference is that Eqs. (21) and (22) contain an implicit
definition of the time of the ensemble with respect to the ref-
erence clock, xre, that is the same for every one of the member
clocks. Therefore, it cancels in the time difference in Eq. (57).
The generic Kalman formalism does not contain an equivalent
definition, which implies that the ensemble time implicitly de-
fined by one clock is not necessarily identical to the ensemble
time implicitly defined by another one. The composite clock
description of Brown (op. cit.) discusses this point as well.
These differences in the implicit definitions of the time of
the ensemble are distinct from the overall arbitrary constant
that can be added to all of the times of the ensemble clocks
without changing the dynamics of the calculation. This arbi-
trary constant contributes to the “unobservable covariance” of
the composite clock, and Brown provides a method for sep-
arating this contribution from the portion that is used to de-
fine the implicit ensemble time scale. This “implicit ensem-
ble mean” uses weights that are derived from the variance of
the clock states. As we discussed above the KAS-2 algorithm
also defines a procedure for uniquely defining the time of the
ensemble.

However, although AT1 defines an ensemble time
uniquely, its definition of ensemble frequency is less clear.
To illustrate this in a simple case, consider clock m and clock

n in an AT1 ensemble with no frequency aging, so that d = 0
for both of them. If we observed the physical times of the
clocks (by using a time-interval counter, for example), the av-
erage frequency over the averaging time τ would be given by

Ymn = Xmn (k) − Xmn(k − 1)

τ

= {xme (k) − xne (k)} − {xme (k − 1) − xne(k − 1)}
τ

= fme − fne, (60)

where Xmn is the measured time difference between clocks m
and n. Thus, the average frequency difference measured by
the hardware is the same as the difference of the two frequen-
cies with respect to the ensemble. However, if we compute the
difference in the frequencies of clocks m and n with respect to
the ensemble by using Eq. (24) twice, we find that the differ-
ence in the frequency states of the two clocks is not the same,

yme (k) − yne (k) �= fme (k) − fne(k). (61)

In fact, the difference in the frequency states at time tk is a
function of the current frequency estimate combined with the
previous frequency states, and the result is similar in form to
what Eq. (46) would have predicted – the difference in the
frequency states is a combination of the previous frequency
states and the current measurements.

The differences between the two algorithms are not as
surprising as they seem at first, and are actually simply a re-
sult of the assumptions that were used to construct them. The
AT1 algorithm is designed on the basis that the measurement
noise of the time differences is negligible, so that the measure-
ments represent the best estimate of the time differences of the
clocks. This is also true even for a clock whose prediction er-
ror is large enough to cause a reset – the algorithm assumes
that the problem is internal to the clock, and difference of the
time states is set to the measured physical time difference pa-
rameters. The AT1 algorithm will not do the right thing if the
noise is really in the measurement system, which is time noise
without any associated frequency fluctuation.

The BIPM ALGOS algorithm, which is used to compute
EAL and TAI is similar in concept. It uses a longer averaging
time, so that the underlying noise type is assumed to be closer
to flicker or random walk frequency noise. In either case, the
measurement noise of the time differences is assumed to be
very small compared to the contribution of the frequency vari-
ance to the measurements. Therefore, the measured hardware
time differences are assumed to represent the true time dif-
ferences between any pair of clocks, and the time states of
the clocks are set to agree with the hardware measurements.
Likewise, the time of the ensemble is uniquely defined based
on the same considerations.

On the other hand, the AT1 estimate of the frequency of
the clock with respect to the ensemble is modeled as having
white frequency noise, and so the frequency state of the clock
is not (and should not be) set to the frequency over the last
measurement interval but to an average of those estimates and
the prior values, with a time constant defined by the range of
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validity of the assumption that the frequency noise is a ran-
dom variable. Therefore, it is natural that the difference in the
frequency states of two clocks is not the same as what would
be calculated from the measured time differences over any
single averaging time. The ALGOS algorithm uses longer av-
eraging times and therefore assumes that the frequency noise
is closer to flicker or random walk. The optimum estimate in
this case is the value at the end of the last interval rather than
the average value used by AT1. In order for this assumption to
be valid, the ALGOS algorithm must have already averaged
the white frequency noise in the 5-day measurements, which
are the basis for the computation. Again, the frequency esti-
mated over any single averaging time is not going to be the
same as the frequency state of the clock in the ensemble. The
details in AT1 and ALGOS are different, but this conclusion
is the same in both procedures.

The Kalman algorithm, on the other hand, makes no such
a priori assumptions about the underlying noise sources or
types. The hardware measurements provide information on
the time differences between the clocks, but, in addition to
the effects of the frequency noise, those measurements have
noise both from the measurement process and from the white
phase noise of the clocks themselves. Therefore, the time dif-
ference measurements should have a vote in specifying the
difference in the time states of the clocks, but not a veto.
The previous difference in the time states also has informa-
tion about the current difference in those states, so that the
current time difference should be a combination of the cur-
rent measurements and the previous state. That combination
will be more appropriate for averaging the white phase noise
of the clocks and the measurement system.

The Kalman algorithm has the ability to model random
frequency aging, but the noise parameter to implement this
ability is not used in the composite clock used in the global
positioning system or in the algorithm of Jones and Tryon.
It is used in KAS-2, but this advantage is mitigated to some
extent by the difficulty of specifying a robust value for this
parameter.

The problems of dealing with frequency aging would be
less serious in a time scale that did not have to run in real time,
and TAI is not computed in real time for that reason. Any
algorithm that can “know the future” is better able to cope
with the present, especially with the long-period variations
in the frequency that are characteristic of hydrogen masers
with frequency aging. This luxury of post-processing is not
available to timing laboratories or to any real-time applica-
tion. The usefulness of a retrospective time scale, such as TAI
(or UTC, which is derived from it), decreases as real-time ap-
plications become more common. On the other hand, a ret-
rospective time scale will always have advantages in being
able to cope with data anomalies and frequency aging, and
there will continue to be a tension between ultimate stability
and accuracy on one hand and real-time performance on the
other.

The assumptions that are the basis for the AT1 algorithm
limit the range of time intervals between computations, but
this is not a significant effect for the NIST implementation of
AT1. The measurement noise is small enough that the noise
due to the frequency dispersion is likely to be larger than the

measurement noise for almost any reasonable time interval
longer than a few seconds (Eq. (7)). However, the interval be-
tween measurements cannot be increased arbitrarily without
running into the problem that the frequency noise is no longer
well characterized as a random variable. The upper limit de-
pends on the type of clocks used in the ensemble, but is prob-
ably at least 24 h for typical cesium devices. As I discussed
above, the BIPM uses a measurement interval of five days in
the computation of EAL and International Atomic Time, and
this requirement would permit even longer intervals – perhaps
as long as 3 months, for typical cesium devices.

However, an AT1 algorithm that used data from conven-
tional time interval counters would have a more significant
lower bound to the interval between computations because
the measurement noise would be larger than for dual-mixer
systems, and the requirement that this contribution be small
compared to the clock noise is not so easy to realize for aver-
aging times less than 1 or 2 h.

The ALGOS algorithm has the same sort of problem,
since the time difference data are often derived at least par-
tially from measurements that use the global positioning satel-
lites. For example, if the time transfer noise was of order 1–2
ns and if the frequency fluctuations of the clock were of order
10−14, the minimum interval between computations would be
1–2 days, and a larger interval would probably be desirable.
Therefore, the existing 5-day computation cycle can be short-
ened only to some extent if the time differences are to be ob-
served by the use of navigation satellites. However, two-way
satellite time transfer and more sophisticated use of data from
navigation satellites could reduce the measurement noise by a
factor of 10 or more, which could be translated into a corre-
spondingly more rapid computation.

XVIII. INCORPORATING FREQUENCY DATA
INTO THE TIME SCALE

The Kalman algorithm can support incorporating fre-
quency measurements in addition to the time-difference mea-
surements that are the basis for most time scales. The obser-
vation matrix (Eq. (34)) would be modified to include these
data, and the rest of the algorithm would be unchanged. This
is not a common practice, at least to some extent because fre-
quency difference data are not generally available – almost all
systems measure time differences and infer frequency from
them.

The data from a primary frequency standard could be
an exception to this principle, since most primary frequency
standards operate only occasionally and do not run as clocks.
Therefore, they are a source of frequency but not of time.
However, NIST no longer uses a Kalman scale, so that this
method of incorporating data from a primary frequency stan-
dard is not available. A simpler and more direct method is
used instead.

The frequency estimates from the primary frequency
standard at NIST are used to characterize the frequency of one
of the masers, which is also a member of the time scale en-
semble. Consecutive estimates of the frequency of the maser
with this method provide information both on the frequency
of the maser in terms of the definition of the second and also
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on the frequency aging of the maser. The frequency of the
maser determined in this way is used to transmit the primary
frequency data to the BIPM, and the frequency aging estimate
is used to adjust the frequency aging parameters of the masers
in the AT1 time scale. (As discussed above, the AT1 software
uses these parameters but treats them as constants.)

Since the stability of the masers and the ensemble is com-
parable to the accuracy of the primary frequency standard, a
running average of three determinations is typically used to
provide an estimate of the aging parameter. A typical value
for the aging would be about 10−21 s−1, but there is consider-
able variation both with time and from one maser to another.

This process can also be used to estimate the frequency
aging of a cesium device, but the value of the aging parameter
is so small that the averaging time needed to estimate it in the
presence of measurement noise and white frequency noise is
too long to be useful – on the order of years. Not only is this
too long to be useful from the point of view of time-scale op-
erations, but it is not much shorter than the life of a cesium
tube, so that the determination would not be very useful in
practice. Some preliminary data suggest that the magnitude of
the aging might be of order 2 × 10−22 s−1. The long-period
frequency variations of a cesium clock are generally not less
than 2 × 10−14, so that the impact of the frequency aging
on the frequency is comparable to the frequency noise only
after about 1200 days. This value can be shortened if the en-
semble is operated in a temperature-controlled environment.
The frequency noise of a cesium clock will often be less than
1 × 10−14 in this environment, so that averaging time needed
to estimate the frequency aging can be shortened by a factor
of 2–5.

As we noted above, the AT1 algorithm is designed as a
time scale – the ensemble time and the time of each of the
member clocks are well defined on each measurement cy-
cle. On the other hand, the frequency of the ensemble is a
more complicated function of the frequencies of the member
clocks, and the definition of the ensemble frequency is more
complicated.

It is possible to re-cast the AT1 algorithm to make it more
useful for incorporating frequency calibrations. The AF1
algorithm28 defines an ensemble frequency and frequency ag-
ing based on the weighted average of these parameters derived
from the frequency data of the members of the ensemble. The
algorithm facilitates a comparison between the ensemble fre-
quency and the frequency of a primary frequency standard.
It starts from the same time-difference data that are used in
the AT1 calculation, and it provides a different perspective on
these measurements. For example, it is better able to detect
frequency steps in the ensemble clocks and is better able to
estimate frequency aging, at least to some extent because it
does not have to run in real time. However, it has many of the
same weaknesses of AT1, and cannot function without admin-
istrative weight limits or a reset algorithm, both of which are
very similar to the AT1 equivalents.

Another approach to modeling the frequency of the NIST
clock ensemble is the TA2 algorithm.29 The algorithm esti-
mates both frequency and time steps by running in both di-
rections over the data. The bi-directional analysis provides a
more robust estimate of time and frequency steps, since the

algorithm can see the future at every analysis epoch. It has
been used at NIST on an experimental basis, but it cannot run
in real time and is not a substitute for AT1.

XIX. OTHER CLOCK MODELS AND MODELING
A SINGLE CLOCK

The algorithms we have described above are intended
specifically for estimating the performance of an ensemble
of clocks. However, the same clock models used to define en-
sembles can also be used to describe the performance of a
single clock with respect to some other timing reference. In
the simplest case, the timing reference is modeled as being
much more stable than the device under test, so that all of
the variance in the data is attributed to the clock being char-
acterized. In addition to the clock models used in ensembles,
there are other clock models that are limited to estimating the
performance of a single clock.

Some of these models are purely phenomenological. For
example, the current time difference of the clock with respect
to the reference can be modeled as a linear combination of the
current time-difference measurement and N previous ones30

x̂k =
N∑

i=0

ai xk−i . (62)

The coefficients of the terms in the summation are chosen so
as to minimize the RMS difference between the predicted val-
ues and the measurements. (Note that the time state of the
clock after the current measurement defined in this way is
generally not equal to the value that was reported by the mea-
surement hardware on this cycle. Thus, the difference in the
time states of two clocks measured with respect to the same
reference and estimated in this way will not, in general, be
equal to the time difference that would be measured between
these two clocks by a direct hardware connection. This is the
same issue as we discussed with Kalman methods and arises
for basically the same reason – the current measurement has
a vote in determining the time state but the previous measure-
ments do too.)

These models have a “finite impulse response” in the
sense that the model “remembers” only the N most recent re-
sults and ignores older values. Since the frequency of a clock
is based on the first difference of the time differences and the
frequency aging is based on the second differences, Eq. (62)
with N = 2 can be considered to be a different formulation
of the models we presented in Eqs. (1)–(3). If the coefficients
are determined by standard least squares then this will result
in stationary, unbiased estimates if (and only if) the variance
in the measurements is at least approximately a random pro-
cess. The coefficients will have a bias if the noise process has
a non-zero mean, but this mean will be absorbed into the con-
stants if it is really unchanging, and this does not degrade the
determination of the coefficients. As we have discussed sev-
eral times, this is likely to be true for short time intervals and
not adequate in the longer term.

If the algorithm is used as is, then a time step or mea-
surement error will persist for N cycles and then be forgotten.
However, it will modify the determination of the coefficients
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during those N cycles, and it will take some time for the co-
efficients to return to the steady-state values. Alternatively, a
“reset” algorithm could be included in which the prediction
error on every cycle was compared against some average pre-
diction error based on previous cycles, and a measurement
that was considered to be an outlier could be corrected to
match the expected value.

Two more complicated situations are common. In the first
case, the channel used to support the time-difference measure-
ments has noise processes that both make a significant contri-
bution to the variance of the data and are also very far from
a white random process. None of the methods we have de-
scribed is adequate for this situation, which arises routinely
in comparing clocks over a public network such as the Inter-
net. A number of methods have been developed for dealing
with this situation, but none of them is really adequate to the
job because the fluctuations in the network delay are not eas-
ily described by stationary statistical models or by RMS noise
parameters.31, 32

The second complication arises when time difference
measurements become expensive in terms of a scarce re-
source, such as network bandwidth, computer cycles or some
other parameter. This complication introduces the require-
ment for a cost/benefit analysis, where the accuracy of a clock
synchronization algorithm must be balanced against the cost
of realizing it. This issue is important in two-way satellite
time transfer, which is used by many national laboratories
to compare national time scales and primary frequency stan-
dards. These comparisons form an important part of the real-
ization of the SI second, and the increasing cost of satellite
time has necessitated experiments to evaluate the impact of
reducing the bandwidth of the transmissions on the accuracy
and stability of the frequency comparisons.33

The cost/benefit analysis is also a consideration for
Internet-based time services, which estimate the one-way
transmission delay as one-half of the measured two-way
value. Both stations must maintain intermediate results while
each connection is in progress so that there is a direct rela-
tionship between the number of simultaneous clients that can
be served and the size and speed of the time server.

One method of reducing the load on Internet time servers
is to increase the time between queries from any one client. If
the variance in the data can be modeled as white phase noise,
the cost of the algorithm decreases linearly with the polling
interval while the accuracy degrades only as the square root
of this interval. There is a smaller advantage even when the
noise process is characterized as flicker phase noise. This is
an important result, since the accuracy required by a client
application is often much less than the accuracy that can be
realized by the algorithm, so that the degradation of perfor-
mance that accompanies the increased polling interval has no
significant impact.34

XX. TIME SCALE STEERING

I now turn to a discussion of ensemble steering – ad-
justing the parameters of an ensemble in response to exter-
nal data. I have already discussed in a general way the use of
data from primary frequency standards to generate TAI from

EAL, the free-running ensemble of commercial cesium stan-
dards and hydrogen masers. Other steered scales are com-
monly used: the composite clock, the time scale used by
the global positioning system, is steered to Coordinated Uni-
versal Time as realized by the U.S. Naval Observatory, or
UTC(USNO). The time scale distributed by all NIST time
services, UTC(NIST), is steered towards UTC as computed
by the BIPM. Many timing laboratories and National Metrol-
ogy Institutes also maintain a local realization of UTC, which
is steered by the use of UTC data published by the BIPM in
Circular T.13 This document, which is issued monthly, lists the
time difference every five days between UTC as computed by
the BIPM from EAL and TAI and the realization of UTC by
each laboratory, which is designated as UTC(lab).

All steering methods are based on the fact that adding a
value to the time of every member of an ensemble modifies
the time states of the clocks but does not have any effect on
the ensemble computation, which depends only on time dif-
ferences. Since the times of the member clocks are always
expressed with respect to the ensemble time, adding a value
to these state variables is equivalent to subtracting the same
value from the ensemble time state. If the value that we added
to the time states at time tk is Ts and if Ts is defined by

Ts = T (t0) + Y (tk − t0) + 1

2
D(tk − t0)2, (63)

then the effect will be to steer the time, frequency, and fre-
quency aging of the ensemble by -T, -Y, and -D, respectively,
starting from the origin time t0. There is nothing special about
implementing the steering by adjusting the time state – steer-
ing in frequency or in frequency aging could also be imple-
mented by adjusting the corresponding state variable for every
clock by the negative of the adjustment to the ensemble.

The process of applying a steering correction (or mod-
ifying the parameters of an existing steering operation), al-
ways introduces a discontinuity in the state parameter of the
ensemble that is being steered. Pure time steering is almost
never used for this reason, because many user processes can-
not cope with discrete time steps, especially if the adjustment
is negative so that time appears to run backwards. (Forward
time steps are not much better, since a forward time step im-
plies that some clock readings may never exist, and a process
that is waiting for a specific time to arrive may wait forever.)

The only application that routinely uses steering of fre-
quency aging is the composite clock algorithm used by the
global positioning system. The GPS controllers steer the time
scale using discrete steps of ±10−19 s−1 in the frequency ag-
ing parameter. (so called “bang-bang” steering). A steer in
the frequency aging of this magnitude introduces a frequency
change of about 10−14 and a time steer of about 1 ns after
1 day. These changes are small enough to be ignored by al-
most all users of the system. This is a steer of the ensemble
time scale; since the navigation solution depends on differ-
ences between signals from the various satellites in view, it
is not affected by this steer in first order. There may be an
effect in second order, since different satellites in the constel-
lation can learn of the steer at different times. Therefore, the
steer can introduce a temporary inconsistency in the ensemble
parameters broadcast by the different satellites, which would
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have an impact on the accuracy of the navigation solution. It
can also affect users who use simultaneous observations of
several satellites to compute the time of a station clock with
respect to the average of all of the measurements, since this
calculation links the data from all of the satellites to the en-
semble time scale. All of these effects would be larger if the
same steering were implemented as a single frequency steer.

The steer of the composite clock is completely transpar-
ent to an application that uses the physical signal from a single
GPS satellite in common-view, where several stations observe
the same satellite at the same time, and compute the difference
of the station clocks by subtracting the arrival times of the sig-
nal at each site as measured by a local clock. The offset of the
satellite clock from the composite clock time scale cancels in
this difference. The situation with regard to the clock on the
satellite is somewhat more complicated if the transit times of
the signals from the satellite to each of the ground stations
are not the same. (This is almost always the situation, since
the satellites move across the sky in many different directions
as seen from the ground stations.) If the ground stations sub-
tract signals that left the satellite at the same instant then the
properties of the satellite clock are irrelevant, but the signals
arrive at the ground stations at different times, and this com-
plicates the subtraction process, since the difference in the ar-
rival times varies as the satellite moves across the sky. On the
other hand, if the ground stations subtract signals that arrived
at the same time as measured by the ground clocks, then they
left the satellite at different times and the stability of the satel-
lite clock (and possibly the motion of the satellite) during this
time difference will become important.

When the frequency of the ensemble is an important pa-
rameter (as with TAI), it is more common to apply the steering
correction to the frequency itself rather than to the frequency
aging. Although frequency steering introduces a discontinuity
in the frequency when the steering parameters are modified,
the frequency between changes has the full stability of the
ensemble. This is not true for steering by modifying the fre-
quency aging – the average frequency over every interval is
different. This is why frequency steering is used by the BIPM
to compute TAI from EAL. Frequency steering is also used by
NIST (and other timing laboratories) to compute UTC(lab),
a local realization of Coordinated Universal Time, based on
data from a local ensemble time scale.

At NIST, UTC(NIST) is defined as an offset from the
atomic time scale, AT1, by Eq. (63) with the frequency ag-
ing term set to zero. The parameters are defined so that the
time offset defined by the equation is continuous whenever
the frequency steering parameter is modified. That is, T(t0),
the origin time offset for any steering equation, is exactly
equal to the last value of Ts of the preceding equation. The
UTC(NIST) time scale is therefore realized as a piecewise-
linear offset from AT1 that is continuous in time with discrete
steps in frequency.

However, there is a fundamental difference between
UTC(NIST) and paper time scales such as TAI or the GPS
composite clock. The UTC(NIST) time scale is used as the
reference time for all of the NIST services, and it therefore
must have a physical realization – there must be physical sig-
nal whose time realizes the definition. This is not true of the

other two scales, where it is enough to compute simply the
offset between contributions to the time scale and the ensem-
ble mean and to list or broadcast these offsets. No clock need
actually realize the ensemble time. Because of this difference,
the NIST steering equations are actually applied to a physical
clock rather than to the parameters of a paper ensemble.

The physical hardware used at NIST is typical of the con-
figuration used at other timing laboratories. One of the phys-
ical clocks in the ensemble is used as the hardware reference
for a phase stepper – a device that produces an output signal
that can be offset from its input signal in phase or in frequency
in response to external commands. (It is possible, although
less common, to steer a physical clock rather than a separate
phase stepper, but this does usually does not work as well be-
cause the physical clocks are typically not designed for this
application.) The output of the phase stepper is processed by
the time scale as if it were a real clock, except that its weight
in the ensemble definition is set to zero for all time. The pre-
diction error of the steered clock is the difference between
its time with respect to the ensemble and the value predicted
by Eq. (63) for that value of tk. After each computation of the
time scale (every 12 min at NIST), a steering command is sent
to the phase stepper to drive the prediction error to zero. The
magnitude of the correction is discussed below.

The stability of the steered clock at NIST is defined by
different considerations in different time domains. For times
less than the cycle time of the scale (12 min at NIST), the
steered clock is free-running and its stability depends on the
stability of the clock used as the reference for the phase step-
per and the stability of the phase stepper itself. A hydrogen
maser is used at NIST as the reference for the phase stepper
because of its very good short-term stability, which is about
2-3 × 10−15 for these averaging times. The free-running sta-
bility of the frequency of the steered clock combined with the
phase noise of the phase stepper and of the measurement sys-
tem produces a time dispersion of a few picoseconds between
measurement cycles.

For times much longer than the cycle time of the scale,
the control loop drives the steering error to zero, and the sta-
bility of the steered clock is identical to the free-running sta-
bility of the scale itself. Over the last few years, the free-
running stability of the scale has been about 1–2 × 10−15 for
averaging times out to 30–40 days; this value varies somewhat
from month to month. The situation at intermediate averaging
times depends on the details of the steering control loop, and
we now discuss the considerations that are important to its
design.

All of the frequency-steering loops we have discussed
must try to satisfy two conflicting requirements. If the uses
of the steered output depend on the accuracy of the time with
respect to some external reference, then errors in the time of
the steered output should be removed aggressively by the use
of frequent steering changes with large frequency offsets, if
necessary. The frequency stability of the steered output will
be degraded by these frequent steers, but that is a secondary
consideration in this model. On the other hand, if frequency
stability is the primary goal, then steering commands should
be infrequent with only small changes from the previous com-
mand. The time accuracy will be degraded in this model, since
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time errors will be removed slowly, and large time offsets may
persist for an appreciable period. (Steering by small changes
in the frequency aging parameter, as is done for the GPS com-
posite clock, also produce slow changes in the steered time
output, since the time depends on the square of the interval
between cycles.)

As a practical matter, this choice is not too significant in
designing the control loop that constructs UTC(NIST) from
the AT1 time scale, because the free-running stability of the
steered clock results in a time offset from the steering equa-
tion of only a few picoseconds over 12 min, so that the steer-
ing commands are normally very small and the choice be-
tween frequency stability and time accuracy does not arise.
However, this conclusion may not be true for other clock
ensembles.

The implementation of the NIST steering system de-
scribed in the previous paragraphs implicitly assumed that the
time scale ensemble, which is used as the reference for the
steering equation, is much more stable than the steered clock,
so that the deviation of the time of the steered clock from
the prediction of the steering equation can be attributed com-
pletely to the steered clock. This is a reasonable assumption
at NIST, since the clock ensemble has a number of masers as
members, and an ensemble of masers is generally more sta-
ble in short term than any one of them. However, this would
probably not be true for an ensemble that was composed pri-
marily of cesium standards with only one maser as the refer-
ence for the phase stepper that implemented the steered clock.
The free-running stability of the steered clock could be bet-
ter than the free running stability of the entire ensemble for
short averaging times (on the order of the 12 min cycle time
of the algorithm), so that the steering method described above
would degrade the short-term stability of the steered clock by
adding ensemble noise. A steering algorithm that averaged the
steering corrections over a longer period could provide better
short-term stability, although it would degrade the ability of
the algorithm to detect and respond to errors in the steered
clock. There are additional issues that must be considered in
implementing the steering needed to construct TAI from EAL
or UTC(NIST) from AT1.

In addition to the compromise that is needed between
time accuracy and frequency stability discussed above, there
is also a consideration of frequency accuracy. For exam-
ple, based on data from primary frequency standards, the
BIPM estimates that the frequency aging of EAL was about
6 × 10−15 during 2009, and TAI would have to be steered so
as to remove this aging. If the frequency adjustments needed
to remove this aging were applied in 12 equal monthly install-
ments (which is about as often as is practical based on admin-
istrative considerations), the monthly frequency adjustments
would be 5 × 10−16, which is roughly the free-running stabil-
ity of EAL for an averaging time of 1 month. Thus, the steer-
ing would have made a significant contribution to the free-
running stability of the scale. The problem would be worse if
the steering corrections were applied less frequently because
they would have to be larger to keep up with the aging of the
input scale.

This discussion highlights a relationship between the
long-term frequency aging that the steering is intended to re-

move and the short-term frequency stability of the scale. If
frequency stability is a consideration, as is true for TAI, the
maximum frequency adjustment that can be used at any time
is limited so as not to degrade the frequency stability of the
scale unduly. Since there is no physical realization of either
EAL or TAI, this problem can be avoided by tabulating some
fraction of the frequency corrections without actually apply-
ing the full correction to the scale. Applications that needed
frequency stability would not use the tabulated corrections,
whereas applications that needed accuracy would do so.

This solution cannot be used at a timing laboratory such
as NIST, because the steered clock has a physical realization.
It would be possible, in principle, to provide a physical real-
ization with an ancillary table of corrections, but this is not
a very practical solution for most users. Accurate modeling
of the frequency aging of the hydrogen masers in the NIST
ensemble is very important for this reason – we cannot si-
multaneously provide time accuracy, frequency stability, and
frequency accuracy without it.

To further complicate matters, the information used to
compute the steering equation used to steer UTC(NIST) to
UTC is available only with a delay of several weeks, so that
the steering involves an extrapolation into the future by up to
30 days. The free-running stability of the NIST time scale,
which is the reference for the steering equation, is about 1–2
× 10−15 for averaging times of this order, so we would expect
that the time dispersion of UTC(NIST)-UTC could be as large
as 30 × 86 400 × 2 × 10−15 = 5 ns RMS. This time disper-
sion is limited primarily by the 30 day delay in the informa-
tion about the difference UTC(NIST) – UTC. The previous
estimate used a linear relationship between time dispersion
and averaging time; the actual relationship would depend on
the characteristics of the frequency stability of the time scale.
A more optimistic estimate would use a dependence propor-
tional to the square root of the averaging time, which would
predict a time dispersion of about 1 ns RMS. Figure 4 shows
the values of UTC – UTC(NIST) for the last 10 years. The
RMS performance is somewhat better than the conservative
estimate above because the frequency stability varies from
month to month because of environmental perturbations and
other effects.

The considerations that govern the maximum frequency
adjustment in the NIST steering algorithm are limited by the
frequency stability of the NIST free-running scale, AT1. The
frequency used in the steering equation should not change
by more than about 2 × 10−15 (0.17 ns/day) in any month
to preserve the frequency stability of the NIST time scale,
UTC(NIST). The frequency aging of the NIST time scale
has been smaller than this limit in recent years, although this
was not always true. Figure 5 shows the frequency steers that
have been applied to the NIST atomic time scale to realize
UTC(NIST). The rate is shown in ns/day, where 1 ns/day
= 1.16 × 10−14.

In summary, steering a time scale requires a balance
among competing requirements, and different laboratories
will adopt different strategies as a result. The steering used by
a timing laboratory to construct UTC(lab) has additional com-
plexity because the data are available only after a significant
delay, so that the effects of frequency and frequency aging
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FIG. 4. (Color online) The difference between UTC as computed by the BIPM and UTC(NIST), the realization of that time scale at NIST. The UTC(NIST) time
scale is constructed by applying a steering correction to the free-running atomic-clock time scale AT1 as described in the text. The modified Julian day number
(MJD) is an integer count of days and is commonly used in time scale work since it is easy to compute time intervals using it. The limits of the plot, MJD values
52 200 and 55 800, correspond to 18 October 2001 and 27 August 2011, respectively.

fluctuations are not detected until well after they have hap-
pened. Therefore, the steering correction will always lag the
variation that it is intended to remove. This time lag is impor-
tant because the stochastic frequency aging of the time scales
mean that the correction is not stationary.

The time lag discussed in the previous paragraph is
equivalent to a phase shift in the steering control loop, and
the loop can oscillate at the period where the time delay is
equivalent to a phase shift of 180◦. To prevent this oscillation,
the gain of the control loop must be less than unity at this
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FIG. 5. (Color online) The frequency steering adjustment applied to AT1 to produce UTC(NIST). The frequency adjustments are applied with no time steps so
that the UTC(NIST) – AT1 is a piecewise-linear function as described in the text. The vertical scale is in units of ns/day, where 1 ns/day = 1.16 × 10−14. The
modified Julian day number (MJD) is an integer count of days and is commonly used in time scale work since it is easy to compute time intervals using it. The
limits of the plot, MJD values 50 800 and 55 600, correspond to 18 December 1997 and 8 February 2011, respectively.

Downloaded 23 Feb 2012 to 132.163.136.56. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions



021101-27 Judah Levine Rev. Sci. Instrum. 83, 021101 (2012)

period, and this generally further limits the maximum steer-
ing changes that can be used. The steering control loop at
NIST operates close to this limit, so that some oscillations
in the values of UTC(NIST)-UTC are present in Fig. 4. The
steering corrections in Fig. 5 before the middle of 2002 show
the oscillation in the steering corrections when the gain in the
control loop was too high for the time delay in reporting the
values of UTC–UTC(NIST). The loop delay was shortened
in 2002, which removed the oscillations. The variations in
UTC–UTC(NIST) after this time are comparable to the fre-
quency stability of the time scale. It is also possible that they
may also be due to long-period random walk of the frequency
of AT1, which only appears to be quasi-periodic over the rel-
atively short interval of a few years.

XXI. DISCUSSION AND CONCLUSIONS

We have presented the design considerations that define
the time scale algorithms that are currently used to realize the
national and international standards of time and frequency,
and we have discussed the AT1 algorithm and the Kalman
algorithm in some detail. These two algorithms form the basis
for most of the time scale algorithms that are in current use.
Both of the algorithms have strengths and weaknesses, and
neither is obviously superior for every application.

The weaknesses of either algorithm can be mitigated, at
least to some extent, if the analyses can be done in a retro-
spective mode, since many problems are much more easily
detected when an analysis can see the future as well as the
past at each epoch. The BIPM computes International Atomic
Time in this way, and NIST also uses a retrospective version
of AT1, which includes administrative tuning to model and
remove both frequency and time steps, to assist in evaluating
the NIST primary frequency standard.

Although retrospective time scales have many theoretical
and practical advantages, the applications that depend on time
and frequency information (such as telecommunications and
navigation) and the time services of national laboratories, de-
pend on ensemble estimates computed in real-time, with no
possibility for going back to re-write history. Finding better
real-time algorithms will continue to be an important research
area, especially in modeling clocks and channels that have
non-Gaussian noise characteristics. Many timing systems are
sensitive to ambient temperature variations, so that methods
of modeling the admittance to diurnal or nearly diurnal fluctu-
ations will become increasingly important in the future. One
way of doing this is to include periodic terms into the co-
variance matrix of a Kalman algorithm.35 These models are
complicated because the amplitude and the phase of the ad-
mittance are not constant values and the variations in these
parameters may not be stationary. The lack of a stationary ad-
mittance is a serious limitation for Kalman methods.

The development of the next generation of primary fre-
quency standards is unlikely to eliminate the need for time
scale algorithms. In fact, the reverse is likely to be true, for
a number of reasons. Many of these standards do not oper-
ate continuously as clocks so that a time scale is needed for
supporting time and frequency distribution methods, for pro-
viding a short-term reference that is needed to evaluate the

residual systematic errors in these primary standards, and for
comparing primary standards that do not operate at the same
time.

Note Added in Proof: The approximate frequency ag-
ing (discussed in Sec. VII) continued during the remainder
of 2011, and the frequency steering of EAL-TAI was 6.526
× 10−13 in January, 2012.

1Explanatory Supplement to the Astronomical Ephemeris, edited by P.
Kenneth Seidelmann (HM Stationery Office, London, 1961), Chap. 3;
D. D. McCarthy and P. Kenneth Seidelmann, Time: From Earth Rotation
to Atomic Physics (Wiley-VCH, Weinheim, Germany, 2009), Chaps. 1 and
2; See also J. Jesperson and J. Fitz-Randolph, From Sundials to Atomic
Clocks—Understanding Time and Frequency (Dover, Mineola, New York,
1999).

2E. M. Reingold and N. Dershowitz (Cambridge University Press,
Cambridge, England, 2001).

3T. J. Quinn, Proc. IEEE 79, 894 (1991).
4R. A. Nelson, D. D. McCarthy, S. Malys, J. Levine, B. Guinot, H. F. Fliegel,
R. L. Beard, and T. R. Bartholomew, Metrologia 38, 509 (2001).

5W. Markowitz, R. G. Hall, L. Essen, and J. V. L. Perry, Phys Rev. Lett. 1,
105 (1958).

6Resolution 9 of the 13th Coférence Générale des Poids et Mesures (CGPM),
1960. Sèvres, France, The International Bureau of Weights and Measures
(BIPM).

7W. M. Itano, J. C. Bergquist, T. Rosenband, D. J. Wineland, D. Hume,
C. W. Chou, S. R. Jefferts, T. P. Heavner, T. E. Parker, S. A. Diddams,
and T. Fortier, in Proceedings 2009 ICOLS Conference (World Scientific,
Hackensack, New Jersey, 2009), pp. 117–124; Also available on the web
from publications database at tf.nist.gov, paper 2391.

8See http://www.ngs.noaa.gov/GEOID for information about the definition
and realization of the geoid and its relationship to mean sea level.

9S. R. Stein, Chapter 12 in Precision Frequency Control (Academic, New
York, 1985); Reprinted in NIST Technical Note 1337, edited by D. B.
Sullivan, D. W. Allan, D. A. Howe, and F. L. Walls, Boulder, Colorado,
NIST, 1990.

10Judah Levine, Rev. Sci. Instrum. 70, 2567 (1999), especially Sec. VIII.
11G. E. P. Box and G. M. Jenkins, Time series Analysis: forecasting and con-

trol (Holden-Day, Inc., San Francisco, 1970), see especially Chap. 3.
12S. Stein, D. Glaze, J. Levine, J. Gray, D. Hilliard, and D. Howe, in Pro-

ceedings of 36th Annual Frequency Control Symposium (IEEE, Piscataway,
NJ, 1982); Reprinted in NIST Technical Note 1337, S. Stein, D. Glaze,
J. Levine, J. Gray, D. Hilliard, and D. Howe, edited by D. B. Sullivan, D. W.
Allan, D. A. Howe, and F. L. Walls, Boulder, Colorado, NIST, 1990. Avail-
able on the web from publications database at tf.nist.gov, paper 610.; See
also S. Stein, D. Glaze, J. Levine, J. Gray, D. Hilliard, and D. Howe, IEEE
Trans. Instrum. Meas. 32, 227 (1983); NIST publications database paper
599.

13S. Romisch, T. E. Parker, and S. R. Jefferts, in Proceedings of 2009 Precise
Time and Time Interval Planning and Applications Meeting (US Naval Ob-
servatory, Washington, DC, 2009), pp. 397–408; Also available on the web
from NIST publications database as paper 2442.

14The Circular T is published monthly and is available from www.bipm.org.
15BIPM Annual Report on Time Activities, Vol. 4, 2009. Available from

www.bipm.org.
16The bulletin is published every month. See http://tf.nist.gov/pubs/bulletin/

timescaleindex.htm
17B. Guinot and C. Thomas, “Establishment of International Atomic

Time,” Annual Report of the BIPM Time, Sec. 1 (1988). Available at
www.bipm.org. See also the next reference.

18G. Panfilo, A. Harmegnies, and L. Tisserand, in Proceedings of 2011 Joint
European Time and Frequency Forum and International Frequency Con-
trol Symposium (IEEE, Piscataway, NJ, 2011), pp. 850–855. G. Panfilo and
E. F. Arias, in Proceedings of 2009 Joint European Time and Frequency Fo-
rum and International Frequency Control Symposium, Besancon, France,
2009, pp. 110–115.

19P. Tavella and C. Thomas, Metrologia 28, 57 (1991).
20G. Petit, Metrologia 40, S252 (2003).; See also J. Azoubib, in Proceed-

ings of 32nd Annual Precise Time and Time Interval Planning and Ap-
plications Meeting, Reston, Virginia, 28-30 November 2000, (US Naval
Observatory, Washington, DC, 2001), pp. 195–210, available online at
www.pttimeeting.org.

Downloaded 23 Feb 2012 to 132.163.136.56. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1109/5.84965
http://dx.doi.org/10.1088/0026-1394/38/6/6
http://dx.doi.org/10.1103/PhysRevLett.1.105
http://www.ngs.noaa.gov/GEOID
http://dx.doi.org/10.1063/1.1149844
http://dx.doi.org/10.1109/TIM.1983.4315047
http://dx.doi.org/10.1109/TIM.1983.4315047
http://www.bipm.org
http://www.bipm.org
http://tf.nist.gov/pubs/bulletin/timescaleindex.htm
http://tf.nist.gov/pubs/bulletin/timescaleindex.htm
http://www.bipm.org
http://dx.doi.org/10.1088/0026-1394/28/2/001
http://dx.doi.org/10.1088/0026-1394/40/3/304
http://www.pttimeeting.org


021101-28 Judah Levine Rev. Sci. Instrum. 83, 021101 (2012)

21P. Tavella, J. Azoubib, and C. Thomas, in Proceedings of 5th European
Frequency and Time Forum, Besancon, France, 1991 (Swiss Foundation
for Research, Neuchatel, Switzerland, 2001).

22A. Gelb, Applied Optimal Estimation (MIT, Cambridge, MA, 1974), see
especially Chap. 4.

23R. H. Jones and P. V. Tryon, J. Res. NBS 88, 17 (1983).
24L Galleani and P Tavella, IEEE Control Syst. Mag. 30, 44 (2010). See also

the many references in this paper.
25S. R. Stein, in Proceedings of the 24th Precise Time and Time In-

terval Planning and Applications Meeting, 1992, pp. 289–302.; NASA
Conference publication 3218, Goddard Space Flight Center, Greenbelt,
Maryland 20771. See also U.S. patent 5,155,695 and 5,315,566.

26K. R. Brown, Jr., in Proc. of the 4th International Technical Meeting of the
Satellite Division of The Institute of Navigation, 1991 (Institute of Naviga-
tion, Manassas, Virginia, 1991), pp. 223–242.

27M. A. Weiss, D. A. Allan, and T. K. Peppler, IEEE Control Syst. Mag. 38,
631 (1989).

28J. Levine, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 629 (1997).

29M. A. Weiss and T. P. Weissert, in Proceedings of 7th European
Time and Frequency Forum, Neuchatel, Switzerland, 1993 (Swiss
Foundation for Research, Neuchatel, Switzerland). Also available on
the web from NIST publications data base at tf.nist.gov, paper
1022.

30Y. S. Shmaily, Metrologia 45, 571 (2008); Y. S. Shmaily, IEEE Signal Pro-
cess. Lett. 15, 517 (2008).

31D. L. Mills, Computer Network Time Synchronization: The Network Time
Protocol (CRC, New York, 2011).

32J. Levine, IEEE/ACM Trans. Netw. 3, 42 (1995).
33V. Zhang, T. E. Parker, J. Achkar, A. Bauch, L. Lorini, D. Matsakis,

D. Piester, and D. G. Rovera, in Proceedings of 41st Annual Precise Time
and Time Interval Planning and Applications Meeting, 2009 (US Naval Ob-
servatory, Washington, DC), available online at www.pttimeeting.org. Also
available on the web from the NIST publications data base at tf.nist.gov,
paper 2432.

34J. Levine, IEEE Trans. UFFC 46, 888 (1999).
35A. Gelb, op. cit., Eqs. (3.8)–(21), p. 82.

Downloaded 23 Feb 2012 to 132.163.136.56. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1109/MCS.2009.935568
http://dx.doi.org/10.1109/58.658316
http://dx.doi.org/10.1088/0026-1394/45/5/011
http://dx.doi.org/10.1109/LSP.2008.925746
http://dx.doi.org/10.1109/LSP.2008.925746
http://dx.doi.org/10.1109/90.365436
http://www.pttimeeting.org

