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For heterodyne phase locking, frequency division of the beat note between two oscillators can im-
prove the reliability of the phase lock and the quality of the phase synchronization. Frequency division
can also reduce the size, weight, power, and cost of the instrument by excluding the microwave syn-
thesizer from the control loop when the heterodyne offset frequency is large (5 to 10 GHz). We have
experimentally tested the use of a frequency divider in an optical phase-lock loop and compared the
achieved level of residual phase fluctuations between two diode lasers with that achieved without the
use of a frequency divider. The two methods achieve comparable phase stability provided that suffi-
cient loop gain is maintained after frequency division to preserve the required bandwidth. We have
also numerically analyzed the noise properties and internal dynamics of phase-locked loops subjected
to a high level of phase fluctuations, and our modeling confirms the expected benefits of having an
in-loop frequency divider. © 2011 American Institute of Physics. [doi:10.1063/1.3627535]

I. INTRODUCTION

Phase-coherent lasers are used in many important scien-
tific and industrial applications including, for example, laser
beam combining,1 atom interferometry,2 quantum optics3, 4

and recently, chip-scale optical atomic clocks.5 Since the first
attempts at laser phase synchronization,6 technological ad-
vances in laser frequency stabilization in the late 1990s have
enabled optical phase control with residual errors in the mi-
croradian range.7 Achieving such a level of phase stability is
still a serious challenge, but many practical applications of
phase-locked lasers require a more modest degree of phase
control, on the order of tens of milliradians. This level of
noise performance has been consistently demonstrated with
extended cavity diode lasers (ECDLs),8, 9 but phase-locking of
solitary diode laser chips with much higher levels of intrinsic
phase fluctuations than ECDLs demands a more significant
effort owing to the much higher demands on the bandwidth
of the control electronics. At the same time, it is desirable
to use solitary diode lasers for applications because of their
compactness and relative simplicity.

In this work, we discuss phase-locking high phase noise
lasers with large heterodyne frequency offsets with an em-
phasis on the effects of having an in-loop frequency divider.
In Sec. II, we present two experimental phase lock loop con-
figurations, one of which utilizes a frequency divider. We also
present the effect of the frequency division on the phase noise
of the optical beat note and discuss the limitations of the tech-
nique. In Sec. III, we discuss a numerical time-domain ap-
proach to noise analysis of a phase-locked loop (PLL) focused
on optimal choice of the loop filter, and we model the carrier
collapse phenomenon10, 11 in a PLL containing frequency di-
viders. Finally, in Sec. IV, we analyze the dynamics of differ-
ent types of PLLs under the influence of high-intensity phase
fluctuations.
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II. PLL EXPERIMENTS

Figure 1(a) shows a conventional laser phase synchro-
nization system used for achieving large heterodyne fre-
quency offsets. It features a microwave frequency synthe-
sizer which sets a “coarse” separation between the two lasers
and down-converts the optical beat note to the RF frequency
range where its phase can be compared to that of a reference
RF source. The resulting error voltage from the output of a
digital phase detector steers the frequency of a “slave” laser
such that the mean frequency difference between two lasers is
fμw ± fRF, where fμw and fRF are the microwave and the RF
frequencies, respectively. In general, the phase detector can
be an analog mixer, but it is also convenient to use a digital
phase/frequency detector (DPFD). DPFDs have a larger cap-
ture range but also reduce the PLL bandwidth due to internal
delays.

An alternative configuration for an optical PLL is shown
in Fig. 1(b). It takes advantage of an in-loop frequency di-
vider, which reduces the size, weight, power, and cost of the
PLL due to the elimination of the microwave synthesizer. It
also permits higher accuracy of phase stabilization due to the
lower intrinsic phase fluctuations exhibited by frequency di-
viders, as compared to microwave synthesizers (discussed be-
low). We have used both systems in Fig. 1 to phase-lock a
distributed feedback (DFB) laser to a frequency-stabilized
distributed Bragg reflector (DBR) laser locked to the D1 line
of 87Rb.12

The linewidth of a typical DFB/DBR diode laser is of
the order of 1 MHz, which results in the beat note spectrum
between two lasers shown in Fig. 2. To identify the type of
phase fluctuations responsible for laser line broadening, we
measured the power spectral density of phase fluctuations of
the optical beat note as a function of the Fourier frequency
F with a microwave delay-line frequency discriminator (FD)
consisting of a power divider with two arms of unequal length
terminated at a double-balanced mixer (DBM). The voltage
at the output of the DBM is a periodic function of signal
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FIG. 1. (Color online) Schematic diagrams of heterodyne phase-locking configurations. (a) A typical diode laser phase synchronization system. (b) A simplified
phase synchronization configuration that takes advantage of an in-loop frequency divider and eliminates the microwave synthesizer.

frequency f given by u = χ
√

PRF cos(2π f τD), where χ is
the DBM power-to-voltage conversion efficiency, PRF is the
power at the RF port of the DBM, and τD is the differential
propagation delay between the two arms.

To enable the phase noise measurements, τD is ad-
justed to set the mixer dc voltage close to zero. This maxi-
mizes the frequency-to-voltage conversion efficiency du/d f
and its linear dynamic range � fFD. Also, it makes the fre-
quency discriminator insensitive to power fluctuations of the
input signal. We measured du/d f = 14 mV/MHz and � fFD

= 50 MHz. The latter parameter was sufficiently large to per-
mit linear conversion of laser phase/frequency fluctuations
into voltage noise.

The spectral density of the phase fluctuations of the op-
tical beat note, Sopt

φ , was measured at 6.8 GHz, which corre-
sponds to the ground state hyperfine splitting in 87Rb. From
100 Hz to 10 MHz, Sopt

φ fits closely to a simple power law:

Sopt
φ = (8 × 1013/F4 + 1 × 106/F2) rad2/Hz. The first term

corresponds to random walk of the laser frequency, while the

FIG. 2. (Color online) Spectra of optical beat notes at 6.8 GHz (1) and at
212 MHz (2). The PLL is off.

second term is due to random walk of the laser phase.13 This
type of phase noise spectrum is typical for most free-running
oscillators regardless of their physical makeup and operation
frequency. The highly diverging 1/F4 term is usually related
to the temperature fluctuations.

Curve 2 in Fig. 2 shows a spectrum of a frequency di-
vided (n = 32) optical beat note. It looks almost “monochro-
matic” compared to the spectrum of the beat note extracted
directly from the photodiode (curve 1). This is because of a
factor of 322 reduction in the power of phase fluctuations.
Frequency division simplifies the process of phase acquisi-
tion and reduces the likelihood of cycle slips.14 The power
of the frequency-divided optical beat note in Fig. 2 is higher
than that of original signal. This is due to the use of an active
divider with a built-in power amplifier.

Next, we measured intrinsic phase fluctuations of a num-
ber of commercial frequency dividers. This was accomplished
by splitting the power of a microwave signal (at 6.8 GHz) be-
tween two frequency dividers (n = 16), whose output signals
(425 MHz) were recombined in quadrature at an RF mixer.
When referred to 6.8 GHz, the phase noise spectrum of an in-
dividual frequency divider fit the power law 10−6/F2 rad2/Hz,
which is >10 dB lower than the phase noise of a typical mi-
crowave synthesizer operating at the same frequency.

Spectra of optical beat notes between two phase-
synchronized diode lasers are shown in Fig. 3. Here, curves
1 and 2 correspond to the PLLs shown in Figs. 1(a) and
1(b), respectively. The error signals for both data sets were
generated with DPFDs. In both cases, the fraction of the to-
tal power confined to the central carrier was between 70%
and 75%. The loop filter for each PLL contained two par-
allel arms: a broadband gain stage and an integrator. The
gain stage was capable of introducing a phase lead of ∼50◦

for the Fourier frequencies from 100 kHz to 7 MHz. The
integrator was needed to suppress the random walk fluctu-
ations of laser phase difference. The effect of the integra-
tor on the beat note spectra is visible in Fig. 3 as a ∼5 dB
deep well in the immediate vicinity of the carrier. The DPFD
of the first PLL (Fig. 1(a)) was a relatively slow device
performing the phase comparison at ∼80 MHz, while the
DPFD of the frequency-divided PLL (Fig. 1(b)) operated
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FIG. 3. (Color online) Spectra of optical beat notes of two phase-locked
lasers. PLL with microwave synthesizer (1); PLL with frequency divider (2)
(n = 8).

at 850 MHz. In both cases, the phase-lock was very reli-
able, with the lasers staying locked for days without human
intervention.

While studying the frequency-divider-based PLL
(Fig. 1(b)), we also exchanged the 850 MHz DPFD with a
double-balanced mixer. The idea was to increase the PLL
bandwidth, since the mixer has a much faster response than
the DPFD. What was lost in this swap was the frequency
discrimination provided by the DPFD, which resulted in
significantly reduced reliability of the phase-lock with only a
marginal increase of the loop bandwidth, prompting us to go
back to using the DPFD.

The weak effect on the PLL bandwidth associated with
the introduction of a mixer instead of a DPFD could be ex-
plained by the relatively large time delay around the control
loop, most of which was due to the light propagation through
free space from the slave laser to the photodiode. Our simu-
lations show that reducing the time delay is more important
for extending the PLL bandwidth than broadening the laser
frequency response. Assuming our current diode laser (with
the crossover frequency of ∼1 MHz), a PLL bandwidth close
to ∼43 MHz could be achieved for a time delay of 0.5 ns,
provided one can tolerate the servo overshoot of 6 dB at a
Fourier frequency of ∼124 MHz. Therefore, miniaturization
of the PLL physical package is a key future step for improving
the coherence of phase-locked noise diode lasers.15

We also measured the power spectral density of resid-
ual phase fluctuations between two lasers, Sres

φ . The spec-
trum was inferred from that of the voltage fluctuations at the
output of the digital phase detector (the PLL in Fig. 1(a)
was used), knowing its phase-to-voltage conversion effi-
ciency (∼0.5 V/rad). Within the PLL bandwidth, Sres

φ was al-
most independent of the Fourier frequency and equal to ∼3
× 10−9 rad2/Hz. The noise power Pres

φ = ∫
Sres

φ ( f )d f com-
puted over the frequency range of 10 MHz was slightly less
than 0.4 rad2. This is consistent with our measured fractional
power of ∼70% confined to the carrier of the optical beat
note.12

FIG. 4. (Color online) Spectra of optical beat notes with the PLL enabled for
various frequency division ratios. Resolution bandwidth = 30 kHz.

It should be noted that our first attempts to phase-lock
two diode lasers using a frequency divider were unsuccessful.
The problem was related to the use of high frequency divi-
sion ratios n. This is illustrated by the data in Fig. 4, which
shows the spectra of optical beat notes at n = 8, 16, and 32.
As n increases from 8 to 16, the PLL bandwidth decreases
from roughly 7 MHz to 2 MHz. At n = 32, the carrier of the
beat note is no longer visible above the noise background.
This loss of PLL bandwidth followed by the carrier collapse
is due to two factors. First, the introduction of a frequency di-
vider reduces loop gain by a factor of n. To maintain the same
quality of phase synchronization one has to increase gain of
the loop filter. This increase, however, is accompanied by a
phase lag at the high Fourier frequencies due to the limited
gain-bandwidth product of the operational amplifiers used in
the loop filter, which reduces the loop phase margin and limits
the maximum practical division factor.

Secondly, it is a simplification to characterize a frequency
divider by its division ratio n. Such an approximation is only
valid at the relatively low Fourier frequencies F . At Fourier
frequencies above a few MHz, the frequency division ratio
behaves as a complex function of F . The use of large divi-
sion ratios lowers the Fourier frequency at which the complex
nature of the frequency divider’s transfer function becomes
significant.

Figure 5 illustrates the transformation of a beat note spec-
trum by the frequency divider. Here, one spectrum corre-
sponds to the output of a photodiode, while another – to the
output of a frequency divider (n = 8). As expected, the frac-
tion of the power confined to the carrier of the frequency di-
vided beat note is much higher than that of the photodiode’s
signal. Within the experimental accuracy, these fractions are
0.99 and 0.7, respectively. Interestingly, even at n = 32 when
the optical beat note has no carrier, the frequency divided sig-
nal features a narrow central peak ∼20 dB above the noise
pedestal.

The above experiments indicate that frequency dividers
can simplify PLL structure and reduce cost without imposing
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FIG. 5. (Color online) Spectra of optical beat notes at 6.8 GHz and 850 MHz.
The PLL is on. Resolution bandwidth = 30 kHz.

any restrictions on the PLL bandwidth at moderate indexes of
frequency division (n = 8). On the other hand, as pointed out
in Refs. 8 and 16 the presence of a frequency divider does not
eliminate the need for broadband noise suppression.

III. NUMERICAL PLL NOISE ANALYSIS

To mimic the phase fluctuations in real oscillators, we
used a set of numerical Monte Carlo algorithms that make
use of a random-number generator to simulate white phase
noise with a Gaussian probability distribution. Then we in-
tegrated the resulting noise to produce a random walk of
phase φ(t) with power spectral density inversely proportional
to the square of the Fourier frequency Sφ(F) = α/F2, where
α is a constant characterizing the noise intensity. To test
our algorithms, we computed the Fourier spectra of RF sig-
nals that have a random walk of phase u = A cos(ω0t + φ(t))
and confirmed that they have the Lorentzian shape with the
linewidth �ν consistent with the Schawlow-Townes formula:
�ν � πα.

In real oscillators, the power spectral density of close-to-
carrier phase fluctuations is inversely proportional to the third
or the fourth power of Fourier frequency. To generate the lat-
ter noise type (random walk of frequency), we integrated the
white noise from our Monte Carlo algorithms twice. Having
computed spectra of the RF signals with a random walk of fre-
quency, we confirmed that their shapes were best described by
a Gaussian profile.

To model phase fluctuations of a real oscillator we used a
mixture of uncorrelated random walks of frequency and phase
with different weighting coefficients. The resulting power
spectrum of the simulated phase fluctuations is shown in
Fig. 6 (trace 1). When simulating random phase variations,
we used N = 221 equidistant samples spread over an obser-
vation period interval Tobs = 0.8 s. This corresponded to a
sampling period of �t = 0.4 μs, which was sufficient to ana-
lyze signals with frequencies up to fmax ≤ 1/(2�t) � 1 MHz
while avoiding aliasing and prohibitively long computation

FIG. 6. (Color online) Effect of PLL on phase noise spectra: PLL is dis-
abled (1); “narrow-band” PLL is on (2); “medium-band” PLL is on (3); and
“broad-band” PLL is on (4). A power law fit to the “free-running” spectrum
gives Sφ(F) � 3 × 105/F4 + 100/F2 rad2/Hz. The filtered spectra are trun-
cated at low frequency, since it was not possible to correctly reproduce them
without increasing Tobs and N .

periods.13, 17 Both N and Tobs strongly affect the shape of the
RF spectrum. An increase in N broadens the RF spectrum,
while an increase in Tobs narrows it. For the simulations in
this section, we kept N and Tobs fixed while varying parame-
ters of the PLL.

PLL filtering of the phase fluctuations was modeled in
the time domain with the filtered phase noise 
(t) computed
as a convolution of free-running phase fluctuations φ(t) and
PLL impulse response g(t):


(t) =
∫ t

−∞
φ(x)g(t − x)dx . (1)

For discrete variables, the convolution integral (Eq. (1)) is re-
placed with the convolution sum,


k =
N−1∑
n=0

φngk−n , (2)

where 
k and φn are the sequences of real numbers cor-
responding to the sampled phase differences between two
oscillators with the PLL enabled and disabled, respectively.
Sequence gk corresponds to the sampled impulse response
g(t), which was derived analytically from the inverse Laplace
transform of the PLL noise suppression factor η(F).

The convoluted process 
k is longer than the “input” one
φn . Thus, if sequences φn and gk contain a total of N and
M samples, respectively, then the overall length of the con-
voluted noise is N + M − 1. For this reason, the process 
k

needs to be truncated to N samples to avoid transient effects
at the end of the observation time interval.

By varying the loop gain and, therefore the loop band-
width, we computed the spectra of the filtered phase fluc-
tuations shown in Fig. 6. The phase noise spectra given
by traces 2, 3, and 4 correspond to the three cases dubbed
as “narrow-band,” “medium-band,” and “broad-band” PLLs,
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FIG. 7. (Color online) Effect of the PLL on the power spectra of simulated beat notes in the case of a purely random phase modulation (a) and a mixture of
random phase noise and low-frequency sinusoidal modulation (b): PLL is disabled (1), “narrow-band” PLL is enabled (2), “medium-band” PLL is enabled (3),
and “broad-band” PLL is enabled (4).

respectively, with the loop bandwidth increasing progres-
sively from 300 Hz to 3 kHz and to 10 kHz.

From Fig. 6, it is clear that a PLL with a single integra-
tor limits the power of the filtered phase fluctuations 
 de-
spite the highly divergent nature of the “input” phase noise
φ(t). We calculate the power of the filtered phase fluctuations
as 0.22 rad2 (trace 2), 0.022 rad2 (trace 3), and 0.008 rad2

(trace 4).
We also computed spectra of the “RF” signals u

= A cos(2π f0t + φ) and v = A cos(2π f0t + 
) to visualize
the effect of the PLL on the beat note spectra between oscil-
lators. The RF spectra Su( f − f0) and Sv ( f − f0), where f0

was assumed to be 100 kHz, are shown in Fig. 7(a). Here,
traces 1 through 4 show the RF spectra of the beat notes
whose phase noise was computed earlier (curves 1 through
4 in Fig. 6, respectively).

The 3 dB linewidth of the “free-running” beat note
(trace 1, Fig. 7(a)) is close to 1.5 kHz. This is five times
broader than the bandwidth of the narrow-band PLL, but de-
spite such an unfavorable bandwidth-to-linewidth ratio, the
corresponding RF spectrum (trace 2, Fig. 7(a)) features a
narrow central spike, which suggests that our estimate for
the total power of phase fluctuations (δφ2 � 0.22 rad2 ) is
reasonable.

When comparing spectra 1 and 2 (Fig. 7(a)), one may
wonder why the narrow-band PLL narrows the spectrum of
the beat note well outside its bandwidth of 300 Hz. Such
“strange at first glance” behavior is a result of cancellation of
phase fluctuations with 1/F4 power spectral density, which
dominate the spectrum of a free-running oscillator at frequen-
cies below ∼50 Hz (see Fig. 6). These spectral components
are well within the PLL bandwidth and, therefore, strongly
suppressed by it.

To support this explanation we analyzed the effect of
the PLL on the RF spectra having sinusoidal phase modu-
lation of large magnitude. We modulated the phase of a free-
running oscillator sinusoidally with amplitude of 100 rad and
frequency of 10 Hz and included random walk fluctuations
(1/F2) with the power spectral density found earlier for the

spectra in Fig. 6. The resulting RF spectrum is shown by
trace 1 in Fig. 7(b). The large-scale phase modulation gives
rise to a nearly rectangular shape of the RF spectrum with
the width of ∼2 × 100 rad × 10 Hz = 2 kHz. Enabling the
narrow-band PLL (trace 2 in Fig. 7(b) reduces the amplitude
of phase modulation from 100 rad to ∼ 0.1 rad, resulting in a
spectral shape determined mostly by the 1/F2 noise term and
virtually identical to that shown by trace 2 in Fig. 7(a).

To explain our carrier-collapse observations for high fre-
quency division factors, we multiplied up the signals from
Fig. 7(a) to simulate the use of a frequency divider. Assum-
ing that the RF spectra in Fig. 7(a) represent those at the
output of the divider, we computed the corresponding RF
spectra at its input. Once again, we computed filtered phase
fluctuations 
(t) and then power spectra of the frequency-
multiplied signals defined as u = A cos(nω0t + n
(t)). The
RF spectra computed for n = 8 are shown in Fig. 8. Here,
spectra labeled as 1 through 4 originate from those with
the same labels in Fig. 7. Frequency multiplication of the
beat note corresponding to the narrow-band PLL (trace 2
in Fig. 7) leads to the collapse of the carrier to the noise
pedestal.10, 11 This is a consequence of the high power of
phase fluctuations of the frequency-multiplied signal: n2
2

= 64 × 0.22 � 14 rad2. Thus, the modeling agrees with our
observations in Sec. II, where the indication of phase syn-
chronous operation did not always translate from the down-
converted signal to the multiplied beat note. Broadening the
PLL bandwidth helps to prevent carrier collapse. In this
respect, extending the bandwidth of a single integrator is
much more effective than an increase in the number of
integrators.

We can formally introduce a signal-to-noise ratio param-
eter SNR for the RF spectra in Fig. 8, defining it as a ratio of
carrier power to the maximum spectral density of noise power.
For a broadband PLL characterized by the flat noise pedestal
around the carrier: SNR ∼ 1/n2, where n is the frequency
multiplication factor. In the case of a narrow-band PLL, the
SNR decreases much faster with n leading to an earlier car-
rier collapse.
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FIG. 8. (Color online) Simulated power spectra of frequency-multiplied beat
notes: PLL is disabled (1), “narrow-band” PLL is enabled (2), “medium-
band” PLL is enabled (3), and “broad-band” PLL is enabled (4). The carrier
frequency was 800 kHz, N was 221, and the number of averages was 128.
Phase locking with a narrow carrier is observed only in the cases 3 and 4.

IV. DYNAMICS OF A PLL SUBJECTED TO HIGH
INTENSITY PHASE NOISE

High-intensity frequency fluctuations in solitary diode
lasers can easily upset the stationary operation of the PLL,
causing cycle slips or total loss of lock. In this section we
briefly analyze the dynamics of a second-order PLL influ-
enced by large-scale frequency variations with magnitude
comparable to the PLL hold-in range.

We begin by considering a PLL based on a first-order
low-pass loop filter followed by a nonlinear amplifier. We as-
sume that the gain of the amplifier reduces with input volt-
age u as Kamp = K0/

√
1 + (u/usat )2, where K0 is the small-

signal gain and usat is the saturation voltage. The product
K0usat corresponds to the maximum voltage at the amplifier
output Emax , which is taken to be 10 V. We also assume that
the PLL phase detector is based on an ideal mixer, so that its
output voltage is a cosinusoidal function of the phase differ-

ence �
 between two oscillators: uPD = SPD cos(�
) where
SPD is the phase-to-voltage conversion ratio (for a typical mi-
crowave or RF mixer SPD � 0.25 V/rad).

Under the above assumptions, the characteristic equa-
tions of the PLL based on a first-order low-pass filter are given
by18

du

dt
+ u

τ
= SPD

τ
cos(�
), (3)

d�


dt
= �ω − max

u/usat√
1 + (u/usat )2

, (4)

where τ is the time constant of the low-pass filter, max is
the PLL hold-in range, and �ω characterizes the frequency
difference between the master oscillator and a free-running
slave. The parameters τ and max were taken to be 10 ms and
4 rad/s, respectively.

A solution of Eqs. (3) and (4) was sought assuming that
�ω is a random walk process. A typical time dependence of
�ω, along with the corresponding solution for the “locked”
phase difference �
, is shown in Fig. 9(a). The solution rep-
resenting the amplifier output voltage uamp = Kamp × u is
shown in Fig. 9(b).

During the interval from 45 to 75 s, �ω exceeds the PLL
hold-in range, the PLL loses lock and misses 13 cycles (uamp

oscillates 13 times between ±Emax ), and then the PLL regains
phase synchronism with the newly found stationary phase dif-
ference �
 = 53π/2. Thus, this system is capable of restor-
ing phase synchronism after losing it.

Most real life phase-locked loops contain integrators, and
often two integrators in series are needed to cope with the
laser frequency drifts caused by variations of ambient tem-
perature. Next we consider the simplest case of a PLL based
on an ideal integrator followed by a nonlinear amplifier. A
system of characteristic equations of such a PLL is given by

du

dt
+ SPD

τ
sin(�
)

d�


dt
= SPD

τ
cos(�
), (5)

d�


dt
= �ω − max

u/usat√
1 + (u/usat )2

, (6)

FIG. 9. (Color online) Dynamics of the PLL based on the first-order low-pass filter. (a) Frequency difference �ω and phase difference �
. (b) PLL amplifier
output voltage uamp as a function of time.
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FIG. 10. (Color online) Dynamics of the PLL based on an ideal integrator. (a) Frequency difference between two oscillators �ω (open- and close-loop control).
(b) Closed-loop phase difference �
 and voltage at the output of the PLL amplifier uamp as a function of time.

Once again, a solution of Eqs. (5) and (6) was sought as-
suming that �ω is a random walk process, one possible real-
ization of which is shown in Fig. 10(a). Also shown is the
frequency difference between two phase-locked oscillators,
�ωlock . Here, the PLL maintains phase synchronism as long
as �ω does not exceed the hold-in range max . Slow varia-
tions of �ω are suppressed and the noisy appearance of the
trace �ωlock is due to spectral components of �ω that are
outside of the PLL bandwidth. �
 remains roughly constant
(�
 = ∫

�ωlockdt), while the output voltage of the loop am-
plifier varies synchronously with �ω (see Fig. 10(b)).

At t = 85 s, �ω momentarily exceeds max and the PLL
loses lock and does not recover, even when �ω drops below
max . This is due to the saturation of the loop nonlinear am-
plifier, which can be overcome only by resetting the PLL inte-

FIG. 11. (Color online) Effect of PLL bandwidth on the magnitude of phase
disturbances caused by large-scale variations of �ω. Curves 1, 2, and 3 corre-
spond to the “locked” phase difference computed for progressively increasing
bandwidth of the phase control loop.

grator. The use of a frequency divider could prevent this loss
of phase synchronism.

In addition to preventing the loss of phase-lock, a fre-
quency divider can also reduce the burst-like noise induced
by variations of �ω with magnitude approaching the PLL
hold-in range.14 We studied this noise mechanism by model-
ing sinusoidal variations of �ω. Figure 11 shows the “locked”
phase difference between two oscillators computed at differ-
ent values of the PLL bandwidth. As the PLL bandwidth pro-
gressively increases (traces 1, 2, and 3), the magnitude of the
phase disturbances drops. Since it is not always possible to
construct a PLL with sufficiently broad bandwidth to cope
with these effects, limiting the magnitude of frequency varia-
tions via frequency division remains an attractive option.

V. CONCLUSION

We have studied the phase synchronization of diode
lasers with high levels of frequency and phase fluctuations.
The use of frequency dividers in phase-lock loops improves
the reliability of the phase lock due to the reduced range of
frequency variations without reducing the spectral purity of
the lock. The use of frequency dividers does not eliminate the
need for a broad bandwidth of the feedback control loop, if a
high coherence between two offset phase-locked oscillators is
required. Broadband phase noise suppression around the car-
rier is essential for avoiding an early carrier collapse when the
signal frequency is multiplied.
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