
IOP PUBLISHING METROLOGIA

Metrologia 48 (2011) S203–S212 doi:10.1088/0026-1394/48/4/S12

Timing in telecommunications networks
Judah Levine

Time and Frequency Division and JILA, National Institute of Standards and Technology and the
University of Colorado, Boulder, CO 80305, USA

Received 5 March 2011, in final form 14 April 2011
Published 20 July 2011
Online at stacks.iop.org/Met/48/S203

Abstract
I describe the statistical considerations used to design systems whose clocks are compared by
the use of dial-up telephone lines or the Internet to exchange timing information. The
comparison is usually used to synchronize the time of a client system to the time of a server,
which is, in turn, synchronized to the time scale of a national timing laboratory. The design
includes a dynamic estimate of the system performance and a comparison between the
performance and a parameter that specifies the required stability based on external
considerations. The algorithm adjusts the polling interval and other parameters of the
algorithm to realize the specified performance at minimal cost, where the cost is taken to be
proportional to the inverse of the interval between message exchanges using either the Internet
or dial-up telephone calls.

1. Introduction

The National Institute of Standards and Technology (NIST)
currently operates 35 public network time servers that are
located at 21 different sites in the United States [1]. (Several
sites have more than one server.) The servers provide time
signals to users in a number of different time formats. The
ensemble of servers currently receives about 5 × 109 requests
per day; most of these requests are for time in the NTP
(Network Time Protocol) format [2]. The number of requests
has been increasing by about 5% per month for several years.
Therefore, we are continuing to study methods of increasing
the number of users we can support with only a smaller increase
in the hardware needed to support the service. The results of
these studies are presented in this work.

In addition, NIST operates an ensemble of servers that
provide time in the ACTS (Automated Computer Time
Service) format [3] using dial-up telephone lines. These
servers currently receive several thousand requests per day
and are also used to synchronize the network time servers that
are not located at the NIST Time and Frequency laboratory
in Boulder, Colorado. Both the network-based and the
telephone-based time services use standard publicly available
communication services, and we do not consider the methods
used to synchronize the networks themselves.

All of the servers are synchronized to UTC(NIST). The
time servers form a clock ensemble that is linked to the NIST
atomic clock ensemble in Boulder, Colorado, by the use of
a hard-wired connection for the systems that are located at
NIST and dial-up telephone lines, which implement the ACTS

protocol, for the remote systems. The users of the service
form a second ensemble, which is linked to the first one using
public networks such as the Internet. In some cases, a user
may implement a third ensemble whose members are linked
together by a network that may be either a private network or
the public Internet. This hierarchy of ensembles is formalized
in the ‘stratum number,’ which specifies the number of systems
between a given system and a national timing laboratory such
as NIST. Using this terminology, all of the NIST systems
operate at stratum 1.

I will discuss the details of these clock ensembles in this
paper. Although these ensembles use many of the techniques
that are familiar from the atomic clock ensembles that are
used by timing laboratories and national metrology institutes
to realize UTC, there are also important differences.

The most important difference between the ensemble
that provides the network time service and the atomic clock
ensemble that realizes UTC(NIST) is that the members of the
network time service ensemble are linked together by a noisy
network. The network has delay fluctuations that cannot be
well characterized by the use of the usual statistical methods
that we use for atomic clock ensembles. The measurement
noise is significant relative to the clock noise, and is very
definitely not well characterized by a Gaussian distribution. In
addition, the clocks at the remote systems are relatively poor
quality quartz-crystal oscillators and have stochastic frequency
ageing and a sensitivity to ambient temperature fluctuations
that is difficult to model. Finally, there is a cost (in network
bandwidth, computer cycles and telephone line charges) in
implementing the synchronization algorithms, so that the time

0026-1394/11/040203+10$33.00 © 2011 BIPM & IOP Publishing Ltd Printed in the UK & the USA S203

http://dx.doi.org/10.1088/0026-1394/48/4/S12
http://stacks.iop.org/Met/48/S203

J Levine

scale must be designed with a cost/benefit analysis in mind,
especially from the point of view of the servers and the
network link between the servers and the community of users.
Although the size of a time message is relatively small (less
than 50 octets in general) and therefore does not require a large
bandwidth, there is a significant overhead in establishing and
monitoring each connection, so that there is a strong incentive
to minimize the number of time messages needed to implement
the synchronization procedure.

The goal of both the primary ensemble algorithm (which
is used to synchronize the servers to UTC(NIST)) and the
secondary ensemble algorithm (which is used by the client
systems to synchronize the internal system clock to the time of
the servers) is to compensate for the instabilities in the network
delay and for the frequency noise in the local oscillators of
the systems, with the understanding that the stability of the
network is usually the limiting factor in the performance of the
overall synchronization process. Improving the clocks at the
system nodes can improve the performance to some extent, but
not nearly as much as one would like.

2. The measurement protocols

The links between a remote NIST server and the NIST atomic
clock ensemble and between an end-user and one of the NIST
time servers use the two-way transmission protocol. The
details of how the protocol is realized vary somewhat from
one message format to another, but all of the methods share a
common model: the round-trip transmission delay between two
systems is measured and the one-way delay is modelled as one-
half of this value. I will discuss the details of the measurement
format for the two important versions of this idea: the Network
Time Protocol (NTP) and the ACTS format.

In the NTP format, a client requests the time from a server
and the client corrects the time data that it receives for the
transmission delay through the channel using its own state and
information provided by the server. The exchange begins when
the client sends a request to the server at time t1 as measured by
its internal clock. The one-way transmission delay is d, so that
the time of the clock on the client has advanced to t1 + d when
the message reaches the server. The time on the server clock at
that instant is t2, so that the time difference (client − server) is

�t = (t1 + d) − t2. (1)

The server responds at time t3 on its clock and the response is
received back at the client at time t4, as measured by the clock
on the client. The two-way transmission delay is

D = (t4 − t1) − (t3 − t2) (2)

where the first term is the total time elapsed during the
exchange of the messages (as measured by the client) and the
second term is the latency between when the server received
the request and when it responded, as measured by the clock on
the server. (The reply from the server contains the information
in the second term of equation (2).) In a well-designed system,
the magnitude of the second term is negligibly small compared
with the magnitude of the first one. For example, the magnitude

of the first term is tens of milliseconds on a typical Internet path,
while the magnitude of the second term is a few microseconds
on all of the NIST servers.

The assumption of the two-way model is that the one-way
delay is one-half of the round-trip value. That is, that d = D/2.
In order to see the impact of asymmetry in the delay, we will
define an asymmetry parameter k, and set

d = kD = k(t4 − t1) − k(t3 − t2), (3)

so that k = 0.5 is perfect delay symmetry. Substituting
equation (3) into equation (1), we get

�t = (1 − k)(t1 − t2) + k(t4 − t3). (4)

The limiting values k = 0 and k = 1 correspond to the
situations where the request or reply delays, respectively, make
a negligible contribution to D. The sensitivity of the measured
time differences to small asymmetries about the value k = 0.5
is given by

�t

�k
= t4 − t1 − t3 + t2 = D, (5)

so that
�t = D�k = D(k − 0.5). (6)

Thus, any asymmetry in the path delay introduces an equivalent
timing error proportional to the magnitude of the asymmetry
and the path delay itself. A well-designed network will
therefore minimize D, the path delay from the client to
the server, for as many clients as possible. (Realizing this
requirement suggests geographical diversity in the location of
the servers. Unfortunately, the network delay and the physical
distance between the two systems are often only weakly related
to each other.) Since the network delay is typically of the order
of 0.1 s, an asymmetry of order 1% would result in a time error
of about 0.001 s. This is an optimistically small asymmetry for
the public Internet, but it can be realized on private networks
and using conventional dial-up telephone lines. A more typical
value for the asymmetry on the public Internet is a few per
cent, so that the protocol can support timing accuracy of a few
milliseconds for many wide-area network paths. Note that even
a perfect clock on the server does not change this conclusion.
The timing error in equation (6) arises from our ignorance of
the true asymmetry, and our assumption that it is 0. I will
discuss this point in more detail below.

The ACTS system uses the same protocol, except that the
network delay is measured by the server rather than by the
client. The message from the server to the client contains an
on-time marker character, which the client echoes back to the
server with as little delay as possible. The server uses the time
that it received the echo character to estimate the round-trip
delay using essentially the same method as described above,
and advances the on-time marker on the next transmission by
the measured delay. The protocol assumes that the system
latency, (t3−t2) in equation (2), is small enough to be ignored in
the computation, and this is easy to realize in practice because
the system latency is of the order of a few microseconds,
whereas the network delay is at least tens of milliseconds.
It is not too difficult to realize a delay asymmetry of less

S204 Metrologia, 48 (2011) S203–S212

Timing in telecommunications networks

80

81

82

83

84

85

0 10 20 30 40 50 60 70 80 90 100

M
ea

su
re

d
de

la
y

/ m
s

Time from start of telephone connection / s

Figure 1. The delay measured by the ACTS server on several consecutive telephone connections spaced a few minutes apart. (Each
connection is shown with a different colour.) The client echoes the on-time marker back to the server using a hardware loop-back cable that
eliminates any latency delays in the client. The transients at the start of each call are caused by the equalizing circuits in the modems.

(This figure is in colour only in the electronic version)

than 1% using traditional voice-grade telephone lines and
standard communications modems, so that the ACTS protocol
can realize a timing accuracy of about 0.001 s.

In both cases, the variance of the asymmetry is an
important consideration in determining the precision of the
process, and we will discuss this in more detail below.

3. The ACTS servers

Since the ACTS system is used as the timing reference for the
network time servers that are not located at NIST in Boulder,
Colorado, we begin by discussing the accuracy and precision
of the ACTS protocol. The details of the ACTS time messages
and the hardware that is used to support the ACTS system have
been described in detail in previous publications [3, 4]. Here
we focus on the statistics of the ACTS transmission system,
since it sets the limit on how well the remote time servers will
perform.

All of the ACTS computers are synchronized using a
direct, hard-wired connection between the computer that
supports the protocol and UTC(NIST) as realized by the NIST
clock ensemble. The connection uses 1 Hz pulses, and it is
a simple matter to synchronize the time of the computers that
support the ACTS with a timing offset and jitter of�2 µs. Since
the timing pulses are available every second, the software to
synchronize the clock that is internal to the ACTS computer and
that serves as the reference for the ACTS timing messages is
simple and straightforward. The 1 Hz pulses generate system
interrupts, and the seconds fraction of the internal clock is
driven to 0 each time an interrupt is received. (The systems
that are used as ACTS servers maintain the system time in
two registers: a counter whose value represents the number of
seconds that have elapsed since the epoch that was chosen by

the designers as the origin of time and a second counter that
show the fraction of a second in units of microseconds.) This
algorithm can lock the system to the wrong second in principle,
and this possibility is avoided by having the synchronization
loop operate sufficiently often that there is no possibility of the
frequency offset of the system clock producing a time offset
of anything close to 0.5 s. Since the frequency offset of the
internal oscillator is of the order of seconds per day, the polling
interval, which is of the order of 1 min, is much faster than is
needed to ensure that the synchronization process does not
cause the clock to jump by an integer second.

Since the times of the clocks in the ACTS servers are
synchronized with an accuracy of a few microseconds relative
to UTC(NIST), the performance of the ACTS system as seen by
a user will be dominated by the accuracy of the procedure that
determines the one-way transmission delay and by the stability
of the delay. Figure 1 shows the variation in the delay measured
by the ACTS by the use of a simple loop-back configuration
in which the client system echoes the on-time marker back to
the server using a hard-wired loop-back cable. The various
traces in the figure are the results of telephone connections
made a few minutes apart. In each case, there is an initial
transient in the delay as the equalizing circuits adjust to the
line characteristics, but the delay then becomes stable with
a variation of about 0.001 s peak-to-peak both within a single
connection and between consecutive connections spaced a few
minutes apart.

The delay reported in any message and used to advance
the on-time marker character of that message was actually
computed based on the exchange of the previous message.
Therefore, the ACTS system will compute and implement an
unbiased estimate of the true delay if the asymmetry of the
delay is close to 0, if the delay is stationary (so that the time of

Metrologia, 48 (2011) S203–S212 S205

J Levine

the measurement is not important on the average) and if it is
well characterized by white phase noise (so that the average of
the delay provides an unbiased estimate of the actual value).
These were reasonable assumptions when the ACTS system
was first installed in 1988, but they are less true now because
more and more telephone circuits are implemented as logical
circuits multiplexed by the use of analogue and, increasingly,
digital methods.

The stability of the delay measured by the ACTS system
is not the whole story, because the timing accuracy depends
on the one-way delay, whereas the ACTS system (as with all
two-way algorithms) uses one-half of the measured round-trip
value as the one-way delay, which is used to advance the on-
time marker in the next message. Since the ACTS system uses
the delay measured on the previous transmission to adjust the
advance for the next one, variations in the delay with periods
close to 1 s are not handled correctly and are in fact amplified
by the ACTS protocol.

The ACTS system can be affected by a second, more subtle
problem when the telephone connection is implemented over
packet-switched networks with appreciable switching delays.
Although there is no difference in principle between measuring
the round-trip delay at the server and measuring it at the
client, the measurement at the server is less accurate when
the asymmetry of the line delay cannot be well characterized
by a Gaussian random variation. The ACTS server sees
only the round-trip delay and adjusts the on-time marker of
the next transmission to compensate for it by the use of the
usual two-way assumption. However, the client sees both
the delay measured by the server (which is part of the ACTS
transmission) and the measured time difference between the
time in the message and its local clock. Since the clock
of the client system does not change its characteristics from
one second to the next one, the client can detect a change in
the symmetry of the path by measuring the variation in the
measured time differences from second to second between the
received messages and its clock. While it cannot measure an
absolute, static asymmetry, it can easily detect changes in the
asymmetry of the order of 1% from second to second. This
information is not available to the server.

The NIST Internet time servers implement this strategy
by measuring consecutive time differences between the ACTS
time messages and the time of the system clock. These data
are then combined with the delay values reported by the ACTS
servers to estimate the statistics of the delay. This method
is not any better than simply averaging the measured time
differences when the asymmetry is always close to 0 and the
delay is well characterized as a Gaussian random variable, but
it can compensate for the flicker and random-walk character of
the delay on newer telephone circuits. It is especially useful in
detecting the linear trend in the asymmetry that is typical of the
impact of the equalizing circuits in the telephone line and the
modems. The result is that the more sophisticated algorithm
can handle the newer circuits with almost no degradation in
stability relative to the original system that was designed in
the days of simpler analogue circuits.

No two-way protocol can correct for a static asymmetry
or for an asymmetry in the delay that changes very slowly,

since the slow variation is hard to distinguish from the random
walk of the computer clocks. The modems make a significant
contribution to the round-trip delay, and we calibrate all of
the modems used in the NIST time service to measure the
asymmetry in the modem delay. (The delay itself need
not be calibrated, since it will be measured by the round-
trip protocol.) For the particular modems that we use, the
asymmetry in the delay is smallest when the modems operate
at a transmission speed of 9600 baud, and all of our time
severs use this speed. (This conclusion is based on tests of our
particular brand of modems, and may not be generally true.)

In spite of all of these improvements, there are some
telephone circuits that have delay variations that cannot be
adequately modelled. The most serious problem is a telephone
line that has a stable delay and asymmetry over the short term
but a bi-modal variation in the asymmetry over longer periods.
The bi-modal asymmetry produces steps in the measured time
differences at the remote system with periods of a few hours.
The time steps are of order 0.020 s, which is easily detectable
because it is much larger than the time dispersion of the system
clock over the averaging interval of about 1 h. There is no way
to remove these time steps, since we do not know the ‘true’
time offset of the remote system. There is no basis for choosing
the mean of the bi-modal time steps as the correct value or
for using assuming that the minimum round-trip delay has a
smaller asymmetry. (This latter assumption is sometimes used
to characterize the delay on a wide-area network, and it can
be useful on systems such as web servers, which often have a
large difference between the inbound and outbound message
sizes.)

4. Design of an ACTS-based time client

The NIST time servers that are not located at the NIST
laboratory in Boulder, Colorado, are synchronized by the use of
periodic telephone connections to the ACTS servers described
in the previous section. They re-transmit the time to users
on the public Internet. The synchronization process on these
servers is designed to complement the statistical performance
of the ACTS system that I described in the previous section.
Since telephone calls are relatively expensive, the algorithm is
designed to exploit the stability of the local system clock so
as to maximize the time between calls. As long as the total
length of the call is less than 30 s, the cost of a telephone call
is not increased by processing consecutive time messages as I
described in the previous section. Even in the best situation, the
standard deviation of the measured time difference improves
only as the square root of the number of measurements, so
that there is not a great advantage to using more than about
10 measurements, which results in a telephone call about
25 s long.

The first step in the design of the system that will be used
as a time server is to evaluate the stability of its free-running
internal oscillator, and the typical results of this evaluation are
shown in figure 2. We evaluate the oscillator using an external
atomic clock as the reference and querying the operating
system for the system time each time we receive a 1 Hz tick
from the external clock. This procedure evaluates the oscillator

S206 Metrologia, 48 (2011) S203–S212

Timing in telecommunications networks

Figure 2. The Allan deviation (square root of the Allan variance) of
the free-running clock on a typical NIST time server. The points
show the measured values and the straight lines have slopes of −1,
−0.5 and 0 to illustrate the domains of the various noise types. The
data are obtained using the operating system to query the oscillator
periodically in response to interrupts received from an external
atomic clock. The data do not represent the performance of the
oscillator itself, which is probably quieter, especially at shorter
averaging time.

as it is seen from inside the operating system. We cannot access
the actual hardware oscillator, whose performance is probably
better than figure 2, especially at short averaging times, where
we are limited by the system latency in processing our time
requests. The performance of the physical oscillator is not
very useful for this work anyway, since the software can see
the clock only through the operating system request process.
Because of this limitation, there is only little to be gained by
replacing the internal physical crystal oscillator with one that
is more stable. On the other hand, anything that reduces the
jitter and latency in the operating system request process that is
used to read the local clock is very helpful. The simplest way
of realizing this improvement is to minimize the number of
processes that are active at any time, with special emphasis on
processes that expect near real-time responsiveness, such as a
mouse-driven graphical-user interface. We have also modified
the operating system kernel to improve the handling of requests
for the system time.

The straight lines on the log–log plot have slopes of −1,
−0.5 and 0 to illustrate the domains of applicability of the usual
power law noise types. The time stability in the white phase
noise domain is about 0.0006 s, calculated by τ × σy(τ)/

√
3,

where σy(τ) is the Allan deviation for an averaging time of τ

seconds. This value is independent of averaging time in this
noise domain, since the Allan deviation is proportional to the
reciprocal of the averaging time. The free-running stability of
the system clock in the white phase noise domain is about a
factor of two better than the stability of the ACTS system, even
with the averaging scheme described in the previous section.
As we will discuss in the following section, a system that
connects to this server through the Internet cannot expect a
timing accuracy of better than a few milliseconds because of the

jitter in the network delay. Therefore, there is no advantage to
synchronizing the clock to much better than this value because
the cost of doing so does not result in an improvement of the
time service as seen by the users.

The previous considerations are valid only so long as the
fluctuations in the local clock are dominated by white phase
noise, and this becomes less true at averaging times greater
than about 1 h, so that the server is configured to connect to the
ACTS system about every 40 min. The ACTS time differences
are used to adjust the local clock by means of the algorithm
that has been described previously [5]. The only important
difference in the current implementation is the handling of
the ACTS messages described in the previous section. Many
of the servers would not be able to function without this
improvement.

5. Design of a network-based time client

5.1. Hardware and software support

In the following sections I will describe the design of a client
system whose clock is synchronized to a national time scale
such as UTC(NIST) by exchanging time messages over a
public network such as the Internet. The messages could
be exchanged with one of the time servers operated by
NIST and described in the previous section, but this is not
a requirement—any time server that conforms to the two-way
delay measurement method and uses messages that conform
to the network time protocol is acceptable. The algorithm will
be based on the statistical principles I have discussed in the
previous sections.

I assume that the algorithm will be implemented on one
of the commonly available computer systems and that no
modifications will be necessary to the usual hardware and
operating system. The algorithm will require read/write access
to the system time parameter; this access is typically available
to privileged processes on all systems. Finally, I assume
that the system is connected to the public Internet through a
reasonably fast network connection. The details of the physical
layer of the connection are not important, except that packet-
based connections using dial-up telephone lines (‘ppp’ or ‘slip’
formats) are usually too slow and have delays that are too
variable to be useful for timing applications.

5.2. Initial configuration

The synchronization software requires only two parameters:
the names or network addresses of several servers that can be
queried to provide the time messages and a parameter that
specifies the desired RMS accuracy of the synchronization
process, which we will designate as Ta. The value of this
parameter will be determined based on the application that
is using the system clock. This parameter will be used
to configure the functioning of the synchronization process
and will be used to estimate the minimum cost (in terms of
computer cycles, network bandwidth, etc) that is required
to realize the required accuracy, given the stability of the
system clock and the network connection. Specifying a value
much smaller than is necessary to support the application will

Metrologia, 48 (2011) S203–S212 S207

J Levine

increase the cost of running the algorithm and will increase the
load on the servers without improving the performance of the
application. Choosing a value that is too large may degrade the
accuracy of the system time to the point that it cannot support
the application.

5.3. Message format

The client system will communicate with the time servers by
the use of the usual two-way message exchange that I have
described above. The message exchange format used by the
Network Time Protocol is perfectly suited to this requirement,
so that the client system we are describing will look like a
standard NTP client to the servers that it queries. The job of
our algorithm will begin once the time difference and network
delay have been estimated from the data in the message
exchange with the server.

5.4. Performance metric

In order to evaluate the performance of the system clock, we
will use the Allan (two-sample) deviation as a function of the
averaging time, τ , denoted by σy(τ). Although modified forms
of this deviation are better able to characterize the spectrum
of the system time noise process, this is not so important
in this application, and the additional insight provided by
these statistics is not worth the additional complexity needed
to calculate them. In addition, the standard Allan deviation
more accurately models the way the system clock is actually
used and is therefore a better metric in this application.
The synchronization process does not use the averaging of
consecutive blocks that is the basis for the modified Allan
deviation and the time deviation, TDEV, which is derived
from it.

We will use Tc = τ × σy(τ) as a measure of the time
dispersion of the system clock. (This estimate is too large by a
factor of 1/

√
3 for pure white phase noise, and the more exact

statistic could be used in principle. Our experience is that the
variance of the system time is rarely characterized by pure
white phase noise, and that our statistic is usually a somewhat
better description of the actual performance.) The algorithm
computes a running estimate of the time dispersion parameter,
Tc, using the time-difference data acquired on consecutive
message exchanges. Each computation uses 24 h of data
to estimate the Allan deviation and the time dispersion for
averaging times out to a few hours. The goal of the algorithm,
which we will describe in more detail in the following sections,
is to choose the averaging time, τ , such that Tc � Ta. That
is, the time dispersion of the system clock is not worse than
the requirements of the application that depends on it. In most
cases, the averaging time will be set to less than this value to
allow for a safety margin and because the performance metric
is a root-mean-square (rather than a peak) deviation.

5.5. System clock model

We model the system clock using the usual three-parameter
model of a time difference, x, a frequency offset, y, and

a frequency noise parameter, η. During the measurement
interval, τ , the system time and frequency evolve as

x(t) = x(t − τ) + y(t − τ)τ (7)

y(t) = y(t − τ) + η (8)

and the message exchange between this system and a single
remote server produces a time difference at time t given
by �X(t). The phase noise of the system clock, which is
typically of the order of a few microseconds, can be ignored
relative to the noise of the measurement process and the time
dispersion due to the frequency noise. These noise sources are
generally at least 100× larger. The frequency noise parameter,
η, includes the stochastic contribution of the frequency
ageing, which is typically larger than the contribution due
to deterministic frequency ageing. (The sensitivity of the
computer clock oscillator to ambient temperature fluctuations
and the sensitivity to variations in the power supply voltage are
treated as stochastic parameters because we do not have any
information to model them accurately. These are important
sources of frequency fluctuations, and modelling them is a
subject for future work.)

5.6. Measurement algorithm

The first step in the algorithm is to compare the measured time
difference �X(t) with the prediction of the model equation (7).
When the algorithm is operating in steady state, the state of the
physical clock on the previous measurement cycle was adjusted
to drive both x(t −τ) and y(t −τ) to 0. Therefore the expected
value of the current measurement is �X(t) = 0. We will take
this requirement as satisfied if

�X(t) � 3 × τc. (9)

That is, the time offset on the current measurement cycle
is consistent with the value derived from the statistical estimate
of the time deviation of the system clock. The factor of 3 is
chosen so that the test should be satisfied with a probability of
about 80% if the measured time difference is consistent with
our statistical estimate of the clock performance. Note that the
noise processes are only approximately Gaussian, and that the
probability of a large value of the time difference is greater
than standard Gaussian statistics would predict.

If we pass this test, we assume that the time dispersion is
mostly due to frequency noise, and we model the frequency
noise as a Gaussian process at the averaging time that was
used. We update the frequency estimate using an exponential
filter whose time constant, Ty , is chosen to ensure that the
assumption of Gaussian frequency noise is satisfied. (The
initial value of this constant is determined by the free-running
stability of the clock as shown in figure 2, and this parameter is
updated by the periodic re-evaluations of the Allan deviation
of the system clock as described above. Note that the data
in figure 2 were measured using a special-purpose device that
was connected to the computer bus and that has negligible
measurement noise. The actual algorithm would use the time-
difference measurements obtained through the actual network

S208 Metrologia, 48 (2011) S203–S212

Timing in telecommunications networks

connection and would almost certainly not be this quiet.) The
updated frequency is given by

y(t) =
y(t − τ) + Ty

�X(t)

τ

1 + Ty

(10)

and we apply this new frequency to the physical system
clock. Depending on the details of the hardware and the
operating system, this adjustment is made either by adjusting
the software clock frequency in the system kernel or by making
periodic very small adjustments to the system time if the
kernel does not support clock frequency tuning. We also
apply a time adjustment −�X(t) to the system clock to set
its time to correspond to the time of the server. The details
of this adjustment also depend on the details of the system
kernel. This time adjustment is usually implemented by a
temporary adjustment to the effective clock frequency so that
there is never a step discontinuity in the system time. These
adjustments are usually made to the time of the system clock as
seen through the operating system—the physical quartz crystal
oscillator itself generally cannot be adjusted. However, since
the physical oscillator can be interrogated only in this way,
the effect is to modify its effective physical characteristics.
(In contrast, note that atomic clock ensembles never adjust the
parameters of a physical clock—the estimates of the time and
frequency offset are maintained as parameters that are distinct
from the physically measured time of the clock.)

5.7. Error detection

If the measured time difference does not satisfy equation (9),
then we have to proceed to various tests to determine the
problem. The first possibility is that either the local clock or the
remote clock (as seen through the network) has experienced a
time step. We query a second server and repeat the tests above.
The possibilities are the following:

1. The two servers agree and the local clock disagrees with
both of them (within the expectation of the noise variance).
We assume that the local clock has experienced a time
step. This is actually quite a rare event and is usually
an indication of a hardware problem. We adjust the
time of the local clock by the measured time step and
do not change any of the other parameters. The large
time difference will propagate into the calculation of the
Allan deviation. Since Allan deviation is an average over
several cycles, it is not adjusted by the full magnitude of
a single time step. However, the effect of the time step is
to increase the tolerance to future fluctuations. If the time
step is a one-time event, then the variance will gradually
return to its previous value on subsequent computations. If
the time step is really caused by a frequency step (which is
generally more likely), the increase in the Allan deviation
will allow the increased time dispersion to modify the
frequency parameter on future cycles. If the time step
is caused by relatively slow frequency wander, then the
future calculations of the Allan deviation will adjust the
time constant in equation (10), since the wander will affect
the transition point where white frequency noise is no
longer a good assumption for the variance.

2. The time difference of the second server satisfies
equation (9). The algorithm accepts this time and
continues. The algorithm assumes that the first server has
an undetected internal time error since the program would
not have used the data from a server that had declared itself
to be unhealthy.

3. The two time differences do not agree with the expected
value and they are not consistent with each other. This
is most likely a network asymmetry problem, although
it is possible that both servers have timing errors. The
program will query a third server if it is available and
repeat the tests. Otherwise, it makes no change to the state
of the clock, since the cause of discrepancy is ambiguous.
(When in doubt about what to do then do nothing.)

The error detection algorithm we have described has two
important design features that are not present in many other
network synchronization algorithms. The first is that the local
clock is used to evaluate the accuracy of the measured time
difference. The algorithm has information on the history of
the statistics of the local clock, and that history can (and
should) be used in the error detection process. The second
important feature is that the algorithm does not contact a second
time server unless there is some question about the accuracy
of the message received from the first one. This is really a
different aspect of the first feature but it has a very significant
implication on the number of time requests that are needed on
every calibration cycle.

For example, if the probability that the remote server has
an undetected internal error is a few per cent, then the data from
the remote system will be accepted if (and only if) the error
in the remote data is such that it is consistent with the time of
the local clock, which means that both the local and remote
systems must be broken simultaneously in the same way and
that the error is not detected by either system. There is no
easy way of calculating the joint probability that both the local
and remote systems have the same error, but, since the two
systems have no common elements, an undetected error in the
remote system is much more likely to trigger case 2 in the error
algorithm, and the probability of a joint error is smaller than a
few per cent, which was the probability of a single error in the
remote system. Therefore, querying multiple servers on every
cycle is a sub-optimal choice, since the extra queries multiply
the cost in direct proportion to the number of servers queried,
but the multiple queries provide little extra information most of
the time. (At best, the standard deviation of the time difference
improves as the square root of the number of servers queried,
while the cost increases linearly with this number.)

5.8. Update of the polling interval

The polling interval (the interval between queries to the remote
time servers) is set dynamically based on two considerations.
(1) If the RMS time dispersion (as defined above) is very
different from the performance specified then we will adjust
the polling interval. If

Tc � Ta (11)

Metrologia, 48 (2011) S203–S212 S209

J Levine

then the RMS performance of the clock is much better than is
necessary and we can increase the polling interval. Conversely,
if the polling interval is already too long, then we must decrease
it to compensate for the poor stability of the local clock
(or of the remote server as seen through the network). This
adjustment continues until either a minimum poll interval of
the order of 10 s or a maximum interval of the order of a few
hours is reached. Equation (11) may never be satisfied for any
poll interval if the overall system is sufficiently unstable.

5.9. The cost–benefit model

Since each request for time from a remote system is a distinct
event (as opposed to contacting the ACTS server using a dial-up
telephone call, where the cost of establishing the connection
is fixed and the incremental cost of receiving an additional
time message is negligibly small), the cost of the algorithm is
proportional to the reciprocal of the polling interval, or 1/τ .
The performance of the algorithm is related to Tc, so that we
can define the quality of the algorithm, Q, as a function of the
interval between queries by the product

Q(τ) = 1

τ
Tc = σy(τ) ∼ τm, (12)

where m is the exponent that approximately characterizes the
Allan deviation of the local clock for an averaging time of
τ . We wish to minimize the value of Q by increasing the
polling interval and/or by decreasing Tc. This function will
be minimized by choosing the largest polling interval, τ , for
which the exponent m < 0, which means choosing a polling
interval so that the noise of the algorithm can be characterized
as no more divergent than white frequency noise.

On the other hand, the performance of the algorithm is
proportional to τm+1, where m is defined as above, so that,
as the polling interval is increased, the performance of the
algorithm will begin to degrade in the white frequency domain
(m = −0.5) even as it becomes more efficient. Choosing the
polling interval domain where m = −1 (white phase noise)
is clearly a bad choice using either metric since the quality
decreases and the performance does not improve. If the polling
interval is made so short that the characteristics of the local
clock do not change between queries, then the performance
improves as the square root of the number of queries. In the
limit of very rapid queries, the query interval is so rapid that
the local clock is effectively not being used at all—the time tag
is simply the average of the data received from the remote end.

If the polling interval is increased beyond the optimum
point computed in the previous section, the cost–benefit
calculation becomes less favourable. The cost continues to
decrease as the polling interval gets longer, but the accuracy
of the local clock is degrading faster than linearly with the
polling interval. In spite of this fact, it may be desirable
to operate in this regime if Tc, the RMS time dispersion of
the synchronization process, is much less than Ta, the time
stability required by the application. As an extreme example,
the Allan deviation of the last point in figure 2 corresponds to
an averaging time of about 3.6 days. The time dispersion for
this averaging time is less than 0.1 s, which would be more than

adequate for an application that needed a time accuracy of 0.5 s.
Two somewhat different versions of this algorithm, called the
‘adaptive frequency-lock loop’, were described in [6, 7]. The
first paper [6] also contains a test of the method using a real
network path that is typical of many network connections and
an externally defined performance metric of 1 s.

5.10. Synchronizing the clock by the use of data from the
physical layer

If the synchronization algorithm we have described operates
as a normal user process, then it must compete with other
processes for computer cycles and for access to the hardware.
If the system is moderately busy, then this competition may
result in relatively large jitter in the stability and accuracy of
the system time, since the jitter affects both the system time
and channel delay estimates. It is tempting to reduce this
jitter by moving at least part of the synchronization algorithm
closer to the device that actually receives and transmits the time
messages. The ultimate version of this idea would be to move
the time-stamp processing of the synchronization algorithm
into the device driver itself, where it would run at the interrupt
priority of the system with all other processes locked out. This
idea can improve the statistics of the synchronization procedure
by a significant factor, but it may have a much smaller impact
on the application that is using the time stamps. In an extreme
case, it can make things worse.

We assume that the reason the client system is going to the
trouble of synchronizing its clock is so that it can apply accurate
time stamps to some sort of event, such as the receipt of some
signal or the processing of some data. The interpretation of
these events and the decision to apply a time stamp to them is
generally an application-layer process, and this process must
compete with other processes for system resources in general
and reading the system time in particular. If the system is
heavily loaded, there is likely to be a delay between the instant
the event actually is received and the time when the application
decides to apply a time stamp to it and between when the
application requests the system time for the time stamp and
when it is actually received back in response to the system
query. Since there is always some delay between when the
application process requests a time from the system and when
the time is returned, the time stamp used by the application
process has a bias that varies with the load on the system but
always has the same sign. That is, the time-stamp applied to
the event is always somewhat later than the time at which the
event actually occurred.

The procedure used in the Network Time Protocol requests
the time twice on each measurement cycle—once when the
query to the remote server is sent (t1 in equations (1) and (2))
and a second time when the response is received (t4 in
equation (2)). If the synchronization algorithm is running as
an application level process then it is also subject to these
same delays described in the preceding paragraph, and both
of these requests will be delayed by the system latency.
Since this latency is inside the two-way loop that measures
the transmission delay, they are measured and corrected for
(at least in first order) by the delay-measuring algorithm. On

S210 Metrologia, 48 (2011) S203–S212

Timing in telecommunications networks

the other hand, if the synchronization algorithm is running
in the kernel or as part of the device driver, then it is much
less sensitive to these delays and so they are not estimated
at all. Thus, although the statistics of the synchronization
process may look better in this case because the apparent two-
way measurement delay is smaller and more stable, the actual
end-user accuracy is worse, since the user process and the
synchronization algorithm are really seeing the system clock
through very different channels with different measurement
delays. This discrepancy becomes larger as the system load
increases, which is exactly the situation in which moving the
synchronization algorithm into the driver will seem to have the
greatest benefit.

The preceding argument assumes that all application-layer
processes on the client system experience the same system
latency in an RMS sense, and there are situations where this is
not accurate. For example, it would not necessarily be the
appropriate description for a special-purpose system where
the application that used the time stamps was a kernel-layer
process or where this application was realized in dedicated
hardware. Moving the synchronization process for the system
clock closer to the interface that receives the time messages
would be appropriate in this case, since both the application
and the synchronization procedure would be accessing the
clock with very similar latencies. This dedicated-controller
configuration was one of the motivations for the IEEE 1588
protocol [8].

6. Summary and conclusions

I have discussed the design considerations that are used to
transmit and receive time using dial-up telephone lines and
the Internet to exchange the information. The algorithms are
similar to those used to characterize atomic clock ensembles,
but there are a number of important differences. The most
important difference is that the channel that supports the
measurement process makes a significant contribution to the
overall noise of the measurement process. This measurement
noise is usually not well characterized as a Gaussian random
variable, so that many of the usual statistical tools are not
appropriate. In addition, I have considered the fact that
exchanging messages and implementing the two-way protocol
to estimate the network delay requires resources in terms of
network bandwidth and computer cycles. The algorithms
used in these applications should therefore be designed to
take the efficiency of the synchronization process (measured
as the number of queries needed to realize a given timing
accuracy) into account, and I have provided a framework for
implementing these considerations.

The synchronization process is driven by a real-time
estimate of the Allan deviation of the time-difference data that
is performed by the client system. The calculation is typically
done about once per day, and the algorithm adapts the interval
between computations to the observed variation in the results.

The algorithms I have described are used to synchronize
the ensemble of time servers operated by NIST using data from
the ACTS telephone time service. The method can provide a
timing accuracy of �0.001 s measured at the server in most

cases. The accuracy of a system that receives the time over the
Internet is poorer than this because the network jitter is larger
and less well characterized.

The overall accuracy of the synchronization process is
determined by three factors: the stability of the server time,
the stability of the user clock, and the statistical performance
of the channel connecting them. The user sees the server
through the network, and so the performance of the server
clock is not important once it is significantly more stable than
the network. Improving the stability of the user clock can
improve the efficiency of the algorithm by allowing a longer
interval between calibration cycles and by allowing longer
periods of operation in ‘holdover’ mode when the connection
to the server clock is lost. This increased polling interval will
translate into improved accuracy if (and only if) the average
asymmetry of the network delay is 0 over sufficiently long
averaging times. This need not be true in general, and we
discussed telephone circuits where it is almost certainly not
true for any averaging time.

Finally, we note that increasing the polling interval to
improve the cost/benefit ratio of the algorithm or to decrease the
cost of the algorithm by relaxing the required synchronization
accuracy has the down-side that it will take longer for the
algorithm to respond to and correct for non-statistical events
such as large time steps. This is a characteristic of all
methods that use root-mean-square statistical estimators. The
maximum error may happen only rarely, but its magnitude can
be arbitrarily large.

The algorithms we have discussed can be used to realize
an unbroken chain of measurements between a user system
and the atomic clock ensemble maintained by NIST to realize
UTC(NIST). I have also provided methods of evaluating the
uncertainty of each link in the chain. The time service software
and hardware therefore support full traceability of the time of
a user system to UTC(NIST). The major uncertainty in this
measurement chain is the estimate of the asymmetry of the
network link between the user system and the NIST server.
Our experience is that the impact of the actual asymmetry is
smaller than the upper bound I have presented in equation (6).
On the other hand, asymmetries on the order of a few per cent
are quite commonly observed, so that there is an incentive to
minimize the round-trip path delay. The network time servers
operated by NIST are distributed as widely as possible for this
reason.

References

[1] The NIST web page contains a list of the locations of the
current servers. In most cases, locations that have multiple
physical servers combine the systems using a load balancer
and present a single network address to the public network.
See http://tf.nist.gov/tf-cgi/servers.cgi

[2] Mills D L 2011 Network Time protocol, version 3, RFC 1305.
See tools.ietf.org/pdf/rfc1305

See also Mills D L 2011 Computer Network Time
Synchronization (New York: CRC Press)

[3] Levine J, Weiss M, Davis D D, Allan D W and Sullivan D B
1989 The NIST automated computer time service J. Res. Natl
Inst. Stand. 94 311–21

[4] Levine J 2008 Improvements to the NIST Network Time
Servers Metrologia 45 S12–22

Metrologia, 48 (2011) S203–S212 S211

http://tf.nist.gov/tf-cgi/servers.cgi
http://dx.doi.org/10.1088/0026-1394/45/6/S03

J Levine

Lombardi M L 2002 NIST Time and Frequency Services, NIST,
Boulder, Colorado Special Publication 432

[5] Levine J 1995 An algorithm to synchronize the time of a
computer to universal time IEEE/ACM Trans. Netw. 3 42–50

[6] Levine J 1999 Time synchronization over the Internet using an
adaptive frequency-lock loop IEEE Trans. Ultrason.,
Ferroelectr. Freq. Control 46 888–96

[7] Levine J 1998 Time synchronziation over the Internet using
AUTOLOCK Proc. IEEE. Int. Frequency Control Symp.
(Los Angeles, CA) pp 241–9 IEEE Catalog number
98CH36165

[8] IEEE 2002 Standard for a precision clock synchronization
protocol for networked measurements and control systems,
New York, IEEE Std. 1588-2002. The original standard was
revised and issued as 1588-2008, which is often called
1588v2. The two versions are motivated by the same
considerations, but are not compatible. The original version
was intended primarily for network connections with stable
and symmetric delays—where all of the nodes are on the
same local-area network segment, for example. The revision
relaxes this requirement and provides support for wide-area
networks.

S212 Metrologia, 48 (2011) S203–S212

http://dx.doi.org/10.1109/90.365436
http://dx.doi.org/10.1109/58.775655

	1. Introduction
	2. The measurement protocols
	3. The ACTS servers
	4. Design of an ACTS-based time client
	5. Design of a network-based time client
	5.1. Hardware and software support
	5.2. Initial configuration
	5.3. Message format
	5.4. Performance metric
	5.5. System clock model
	5.6. Measurement algorithm
	5.7. Error detection
	5.8. Update of the polling interval
	5.9. The cost--benefit model
	5.10. Synchronizing the clock by the use of data from the physical layer

	6. Summary and conclusions
	 References

