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Direct comparison of two cold-atom-based optical frequency
standards by using a femtosecond-laser comb
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With a fiber-broadened, femtosecond-laser frequency comb, the 76-THz interval between two laser-cooled op-
tical frequency standards was measured with a statistical uncertainty of 2 3 10213 in 5 s, to our knowledge
the best short-term instability thus far reported for an optical frequency measurement. One standard is
based on the calcium intercombination line at 657 nm, and the other, on the mercury ion electric-quadrupole
transition at 282 nm. By linking this measurement to the known Ca frequency, we report a new frequency
value for the Hg1 clock transition with an improvement in accuracy of �105 compared with its best previous
measurement.

OCIS codes: 120.3930, 320.7090, 190.4370.
State-of-the-art optical frequency standards based
on cold atoms and ions exhibit excellent frequency
stability and have the potential for achieving high
reproducibility and accuracy. Such frequency ref-
erences should find application in precise tests of
fundamental physics and in next-generation atomic
clocks. Incorporating these optical-based standards
into a clockwork, however, has proved troublesome
because their large frequencies �.300 THz� could not
be conveniently converted into countable microwave
signals. Several optical-frequency measurements
have been made with harmonic chains used to mul-
tiply the frequency of the 9.2-GHz cesium microwave
standard,1 –6 but these chains are complex and their
operation requires significant resources. A para-
digm-changing simplification was pioneered by Udem
et al.7,8 when they used the wide frequency-domain
comb output of a femtosecond (fs) mode-locked laser
to measure the absolute frequency of the Cs D1 line
and the hydrogen 1s 2s transition,9 the most accurate
measurement to date of an optical frequency. A
further refinement, by Diddams et al.,10 expanded the
available comb spectrum to an optical octave by broad-
ening the fs-laser output in a microstructure fiber,
leading to a direct connection between microwave
and optical frequencies. A recent comparison of two
independent, f iber-broadened fs laser combs that
measured the same frequency interval verified that a
precision and reproducibility of ,5.1 3 10216 can be
attained with this measurement method.11

In this Letter we report a high-precision compari-
son of two promising cold-atom optical frequency
standards by use of a fs-laser frequency comb. One
standard is based on a 2-mK collection of �107 neutral
40Ca atoms, and the other probes a single 199Hg1 ion
that is laser cooled to near the Doppler limit. At
657 nm, a cw frequency-stabilized diode laser is locked
to the central Ramsey–Bordé fringe obtained by
four-pulse excitation of the Ca 1S0

3P1 intercombina-
tion transition �nCa � 456 THz, Dn � 400 Hz�.12 This
system has demonstrated a frequency instability
of 4 3 10215 t21�2 (t is the averaging time) when
it is probing subkilohertz fringe linewidths.13 For
the present measurements the Ca spectrometer was
operated with 2.9-kHz linewidths, which gave an
estimated short-term instability of ,2 3 10214 t21�2.
The oscillator in the Hg1 standard is a frequency-nar-
rowed cw dye laser at 563 nm that has a linewidth
of �0.16 Hz for a 20-s integration time.14 This
light is frequency doubled to 282 nm to interro-
gate the 2S1/2

2D5/2 electric-quadrupole transition
�nHg1 � 1065 THz, Dn � 1.7 Hz� of a Hg1 ion that
is conf ined in a linear, cryogenic, rf ion trap. Rabi
linewidths as narrow as 6.7 Hz at 282 nm have been
observed with this system.15 For these measurements
the laser was stabilized to the Hg1 ion with a linewidth
of 40 Hz at 282 nm, and the instability under these
conditions is estimated to be ,3 3 10215 t21�2.

The fs-comb frequency measurement system shown
in Fig. 1 measures the 76-THz interval between the
657- and the 563-nm light which is transported from
each stabilized laser by a 10- and a 130-m optical
fiber, respectively. No attempt has been made to
actively cancel the fiber-added noise,14,16 which we
measured to average as ,4.4 3 10214 t21�2 for these
optical frequencies. The frequency comb is produced
by a Kerr-lens mode-locked Ti:sapphire laser that has
a bandwidth of 42 nm (FWHM) centered at 810 nm
and operates with a repetition rate of �98 MHz. To
control the frequency spacing between comb modes we
detect the ninth harmonic of the repetition rate with
a signal-to-noise ratio �S�N� of .70 dB in a 100-kHz

Fig. 1. Block diagram of frequency measurement: DBM,
doubly balanced mixer; PD, photodiode; BPF, bandpass fil-
ter; TO’s, tracking oscillators.
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bandwidth (BW) and then mix it with an 882-MHz
reference signal from a frequency synthesizer. We
phase lock the repetition rate of the mode-locked laser
to this reference frequency by using the phase-de-
pendent mixer output to control the horizontal tilt of
the high-ref lector mirror, which is situated after a
dispersion-compensating prism pair.7 – 9 The internal
clock of the synthesizer is phase locked to a hydrogen
maser [H-Maser; sy �t� � 2 3 10213 t21�2], whose
frequency is known with an uncertainty of 64 3 10215

by comparison with a Cs primary standard.
To extend the comb bandwidth we launch the fs-laser

pulses into a 5 cm-long microstructure optical fiber
that has a core diameter of �1.7 mm and zero group-
velocity dispersion near 770 nm.17 Self-phase modu-
lation and other nonlinearities in the f iber produce an
output spectrum from approximately 500 to 1100 nm.
The cw light from both stabilized lasers is also cou-
pled into the microstructure fiber to ensure good spa-
tial mode overlap with the fs-laser light. The fiber
output is dispersed by an optical grating and imaged
onto slits such that only a few modes in the vicinity
of the cw light frequencies are selected. A photodi-
ode after each slit detects the rf heterodyne beat note
�d1, d2� between the cw light and a comb mode with a
S�N of �25 dB in a 100-kHz BW, with the background
limited by the shot noise of the cw light power. For
accurate frequency counting, a tracking oscillator is
phase locked to each beat note to provide regenerated
signals with .50-dB S�N in a 100-kHz BW. These
tracking oscillators consist of a low-phase-noise, volt-
age-controlled oscillator that is phase locked with an
�100-kHz BW to track the incoming signal in such a
way that the broadband, background noise pedestal be-
low the beat note is not reproduced.

In these measurements the comb-mode spacing
nrep is locked tightly to the H-maser frequency, but
the offset frequency of the fs-laser comb remains
uncontrolled. So, although the comb modes are
spaced equidistantly, knowledge of the absolute fre-
quency of an individual comb mode is limited by the
frequency jitter of the fs laser ��10 MHz�. As we
are concerned only with a frequency difference, we
can remove this noise that is common to both beat
notes by mixing together the correlated signals from
the two tracking oscillators.10 The mixer output is
either a stable sum or difference signal d � d1 6 d2,
which is counted to yield the frequency interval
Dn � 1/2nHg1 2 nCa � Nnrep 6 d. We determined
the integer number N and the sign choice for d

unambiguously by comparing Dn with our previous
610-MHz measurement of this frequency difference,18

and we verified our choices by making measurements
for different repetition rates.

The inset in Fig. 2 shows a typical time record
of the frequency f luctuations of d, counted with a
5-s gate time. Points that exhibit obvious cycle slip
errors, which are due predominantly to a tracking
oscillator’s losing lock, are eliminated in the data
sorting. We calculate the Allan deviation, shown in
Fig. 2, for various averaging times by juxtaposing the
5 s gate-time data; the deviation indicates that the
measurement precision averages as �34 Hz�t21�2 for
the duration of the measurement. Three frequency
sources �nCa, nHg1 , nrep� contribute to the short-term
instability of this measurement, and from these data
alone we cannot attribute the noise unambiguously
to a specif ic source. Nonetheless, by assuming that
all the noise comes solely from a given source, we
can place an upper limit on its short-term Allan de-
viation. From this datum we infer an upper limit of
#7 3 10214 t21�2 for the fractional frequency instability
of the two optical standards, although each probably
has a significantly better stability.13 – 15 Combining
the best estimates for the (normalized) instabilities
of the microwave and two optical references, as well
as for the optical f iber delivery, we arrive at a calcu-
lated instability of 3.5 3 10213 t21�2 for the 76-THz
interval, in good agreement with the measured value
of 4.5 3 10213 t21�2. There are likely additional
degradations of the stability as a result of noise in the
microwave detection of the repetition rate and (or) in
the synthesizer electronics that multiply the frequency
of the H-maser reference.

The results of running the fs-comb measure-
ment system on four separate days over a 6-week
period are plotted in Fig. 3 as the frequency off-
set from the weighted mean, which is Dn �
76 374 564455429 �40� Hz. Each of these points
represents the weighted mean of the data runs on an
individual day, corrected for the second-order Zeeman
shifts for both Ca and Hg1, which are determined to an
uncertainty of ,10214 for each day. The Ca system
contributes to the majority of the 40-Hz uncertainty;
the Hg1 reference supplies a ,10-Hz contribution (at
563 nm), limited by the present measurement of the
electric-quadrupole shift.15 The largest systematic
error ��30 Hz� stems from uncertainty in our knowl-
edge of the angular overlap of the counterpropagating
probe beams in the Ca spectrometer, which leads to
a residual f irst-order Doppler shift when the cold Ca
ensemble has a transverse drift velocity.4 It is note-
worthy that the uncertainties for the data of May 5
and May 25 are dominated by systematic effects.
The run-to-run measurements on those days are
consistent with �10 Hz, as illustrated for the May 25
data in the Fig. 3 inset, which show only the statistical
uncertainty for each run. Given the relatively small

Fig. 2. Allan deviation of a typical measurement
record. Curve, �34 Hz�t21�2; inset, the corresponding
time record. From these data we place upper limits
of sy�t� # 45, 7.4, 6.4 3 10214 t21�2 for the short-term
instability of the microwave reference, nCa, and nHg1 ,
respectively.



104 OPTICS LETTERS / Vol. 26, No. 2 / January 15, 2001
Fig. 3. Frequency deviation (Hz) of Dn � 1/2nHg1 2 nCa.
Each data point is the weighted mean of an individual day’s
data runs. Inset, data runs for May 25 collected over a
50-min period, with each run averaging 230 s. Error bars
in the inset ref lect only statistical uncertainties.

statistical contribution (�2 Hz on a given day) to
the total uncertainty, we believe that fs-laser-based
frequency metrology gives us, for the f irst time, a
practical tool for evaluating systematic shifts at an
inaccuracy approaching 10215 for these high-accuracy
optical standards.

The uncertainties given for the two optical refer-
ences were estimated for conditions during these ex-
periments only, and no serious attempt was made to
minimize systematic effects. Nevertheless, it is en-
couraging that our results for the frequency differ-
ence have a standard deviation of the mean of 60 Hz
over a 6-week period. This consistency shows that all
three components, the frequency-measurement system
and the two optical standards, are reproducible at this
level. Thus we offer an improved value for the Hg1

clock transition frequency by summing our measured
Hg1�2 Ca interval with the absolute frequency of the
Ca 657-nm clock transition measured in Ref. 4. We
obtain nHg1 � 2 3 532360 804 949559 �124� Hz, where
the uncertainty is dominated by the 120-Hz uncer-
tainty in the Ca measurement. This is an 80,000-fold
improvement over the best previous frequency mea-
surement of the 282-nm clock transition.18

Work is currently under way to self-reference the
frequency offset of our fs comb,19 and we anticipate
confirmation of the Hg1 and Ca frequencies with a
direct rf-to-optical measurement. In fact, locking a
mode of the self-referenced comb to one of the opti-
cal standards can achieve an all-optical connection be-
tween Hg1 and Ca that eliminates any dependence
on the H-maser microwave reference. This interval
measurement should then average at the stability of
the optical standards alone, allowing for a more pre-
cise determination of systematic shifts. The capabil-
ity to intercompare three high-performance frequency
standards (Hg1, Ca, and Cs) has powerful advantages,
such as permitting absolute frequency stabilities to be
determined and the f idelity of fs-comb measurements
to be tested. Indeed, an optical clock is realized by
the repetition-rate output of an all-optically referenced
comb, and microwave sources with frequency instabil-
ities near 10215 t21�2 should be obtainable, provided
that the repetition-rate signal can be extracted with
a suitably high S�N.
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