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Abstract—We have achieved a stability of aL0~'* +=1/2 for /
3 <7< 30 s with a laser-pumped rubidium gas-cell frequency (
standard by reducing the effects due to noise in the microwave /
and laser sources. This result is one order of magnitude better

than the best present performance of lamp-pumped devices. ll’rex‘:;l NIST microwave
, . o
Index Terms—Laser optically pumping, Rb frequency stan- synfhesizer
dard. Phase Quartz,
Isolator modulator voltage
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I. INTRODUCTION RbY cell and et
. laser sideband ! Lock-in
HE DEVELOPMENTS of tunable laser diode sources sorvo system ‘: e
have opened new prospects for atomic clocks. Monochro- of A
matic light sources have improved the performance of th Fom
existing frequency standards (such as cesium beam standardgjyr diode Band-pass | _ | Noise )
. filter source Detection
and led to new types of standards (such as fountains and other
standards based on laser cooling) [1]. Fig. 1. Block diagram of the Rb clock. The role of the noise source is

In the field of passive gas-cell frequency standards, mudéscribed in the text.
research on the replacement of the discharge lamp with a
laser diode has been reported during the last 15 years [2]-[5]. [I. EXPERIMENTAL SETUP
Inter.esting new physical phenomena haye been observed anﬁ,e use the physics package of a commercial rubidium
studied [6],_[10] and great Improvements in performapcg ,hagf‘andard with the lamp and filter cell removed. The absorption
been predicted [11]. However, the failure to achieve S|gn|f|cagé" contains isotopically pure Kb and has a total volume
progress in the frequency stability and the problem of ProcYls 15 cnd. One third of this volume is interrogated. A

ing reliable laser diodes has damped the initial momentum,;y re of buffer gases provides efficient quenching and a low

Our main interest is to build a “super” local oscillator fortemperature coefficient. The microwave caviiEq,; mode)
the standards based on cold atoms or ions [12]. Our goal isﬁgs aQ of 100. See Fig. 1

first reachor () ~ 1.10~4% 7~1/2 (with a buffer-gas cell) and So far, we have considered three types of laser sources:

—14 . 1/2 H
thenay (1) ~ 1-107** 7%/ (with a wall-coated cell) [14]-{16]. |, o4 hand solitary lasers, extended-cavity grating-feedback
However, our analysis of the sources of instabilities in Sughsers (ECLD), and distributed Bragg reflector (DBR) lasers.
a clock also applies to the more industrial or appllcatlonl-he linewidths were 50 MHz, 100 kHz, and 2 MHz, respec-

oriented approach [13]. In fact, the problem of how lasefqy The laser frequency is servo-controlled to a saturated
frequency modulation (FM) and amplitude modulation (AM)absorption line of a separate evacuated Rb cell. Bothl2he

noise affects clock stability is the same, whether at the!40 (795 nm) andD, (780 nm) transitions have been studied.

11 imi imati
or at the 107" level [14], [15]. Similarly, estimating how " &, frequency synthesizer uses three low-noise quartz os-
microwave .sertheS|z.er phase modulation (PM) no'se,aﬁegiﬁators, at 5, 100, and 11.808 MHz. The 5-MHz oscillator
clock stablll_ty_ is as important for a “super” local o_scnlatoriS first multiplied by 2, and then by 10. This 100-MHz signal
as for a m_|n|atur_e low-cost standard [16]. There is only @ ,;seq to phase lock the 100-MHz oscillator. The 100-MHz
difference in scaling. signal output of the second oscillator is phase-moduléfed
the modulation frequency, is about 300 Hz) and multiplied by
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Noi Noi Noi - Atomic signal FWHM : 900 Hz
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E:_?ZO mod. 7 2 30 3 'qo’ L e Measured current noise |
DBZR c (1.2 pA/N Hz)
sideband 12 MHz 1.2 1.2 1.2 < 7
2-10"3 - B
&
0 1 | 1 | 1 | ] l 1 I 1 [ t l 1 l 1 l 1

0 2 4 6 8 10 12 14 16 18 20

physics package is then used to stabilize the 5-MHz oscillator. Added noise on the detector [pA/v Hz]

The PM noise of the 100-MHz signal after phase modulation

is given by [16] Fig. 2. o,(1s) as a function of the photocurrent noise spectral density. Slope

= 9.7.10~'"Y/pA/v/Hz.

Se(f) =3.2- 107 rad’ /Hz, f =100 Hz
So(f) =2-10"" radf /Hz, f=300Hz the ECLD and the solitary laser), is due to laser phase noise
Se(f) =1.2-107 rad®/Hz, f =600 Hz combined with the atomic absorption [19]. The result for the
Sa(f) =110~ rad? /Hz, 1kHz< f <1 MHz ECLLD is_ alnomalogsly large. \r/]Ve éfgrlw_léthls is the res_L;]It Ef
Sa(f) <5-10-1 rac/Hz, F>1MHz. 1) mechanical perturbations to the interacting with the

limited bandwidth of the locking loop. As shown in the last

column of Table |, passive noise cancellation is also possible
Ill. ANALYSIS OF THE INSTABILITY SOURCES [14]. The shot noise can thus be approached with all three

This section has four parts which describe our analysis lgger systems (S_hOt noisee detector noise= 1.2 pA/_\/m).

the major limitations for the short-term frequency stability in 3) Current N0|.se Produc_ed by the MICI‘OW&VG.FIeH-h the

our laser-pumped Rb standard. Section III-A identifies thré€Sence of optical pumping, the microwave field induces a

sources of noise added to the resonance signal. Section IIfgsluction of photocurrent. This absorption of light constitutes

concerns the “aliasing” effect of the microwave synthesiz e double resonance signal for stabilizing the quartz oscillator.

PM noise. Section I1I-C analyzes the light shift, and Sectiog,lnfortunately, it can also introduce additional noise. With a
lI-D discusses other effects previous version of the synthesizer, the current noise increased

from 1.5 (dc level: 5uA) to 6 pA/+/Hz (dc level: 3:A) when
the microwave radiation was present. The theoretical limit of
_ _ _ _ _ o,(T) was6 - 10712 7—1/2 and we measured- 10713 7~1/2
As mentioned in previous studies, the ultimate short-terpigy
frequency stabilityo, (7) is directly proportional to the pho- = The clock stability was improved by introducing a phase-
tocurrent noise added to the resonance signal [14], [17], [1§{cked 11.808-MHz low-noise quartz oscillator (in the previ-
This noise has three main origins: detector noise, laser A5 gesign the digital synthesizer was directly subtracted from
and FM (or PM) noise, and microwave AM and PM noisgne 500-MHz signal). After this modification, the photocurrent
They are reviewed below. _ o noise decreased to 1.2 pA&Hz when the microwave radiation

1) Current Noise Produced by the Detection Circuite a5 present. Thus the contribution of the synthesizer to the

use a photodetector in a transimpedance circuit. The Nojgsocurrent noise has been reduced to a negligible value.
sources are: the detector, the feedback resistor, and the OPey Clock Stability Versus Current NoiséVe have inten-

ational amplifier. Qur typice}l dc .photoqurren.t is /3. Thg tionally added noise centered ofi, (287 Hz) to the

feedback resistor is 1 M. With this configuration, the noise photocurrent signal (Fig. 1, switch on b). The resulting clock

from the detection circuit is 0.6 PA/HZ (at _300 Hz). stability (o,,(1s)) as a function of the added noise is shown
2) Current Noise Produced by the Lasefhe photocur- i Fig "2 The slope agrees with a previous estimate [7, egs.

rent noise in typical operating conditions, with the three typqi) and (2)]o, (1) = 110713, Noise [pA/v/Hz] - 7=1/2. With

of laser sources, is given in Table | [14], [15]. a noise of 1.2 pAv/Hz, the limit of o, (1) due to this noise
The intrinsic intensity noise (column 2) of all the lasefg | 9. 1913 172,

sources is not significantly higher than the shot noise. How-

ever, the values measured after the laser beam has passed =~ = ) )

through the vapor (column 3) indicate that additional noide: “Aliasing” by the Local Oscillator PM Noise

is present on the detection photocell. This noise, which canAs pointed out by Kramer [20], the PM noise at the even

be one order of magnitude higher than the shot noise (witlarmonics of the modulation frequency in the interrogating

A. Noise in the Photocurrent
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TABLE I In (3),
LimT To THE Rb Qlock STABILITY (07y(1s))
DUE TO THE PM NOISE OF THE SYNTHESIZER D AVilock 1.10714
1. ~
Velock * Al/loaser - Algser KHz- uA
Harmonic C, Ciy CutoCy Total Withnotch D AVgock 9.10"14 @)
2: 0 ~
contribution SHz  1148Hz 1-12kHz  {jmit onC, Velock - AV laser © Allaser kHz - A

where Arp .. is the laser detuning from;, = 0. Slightly
different results are obtained in a different geometry or with
different buffer gas conditions.

a.) Medium- and Long-Term Stabilitywith (3), the re-
ure -
guirements on the laser frequency stability and accuracy can
be determined. We have not addressed this problem yet.

2) Short-Term Stability:As shown in Table I, the laser

. . intensity noise(é/jaser) in the spectral domain aroung,,
source, degrades the performance of passive atomic frequegc%f the order of 1-3 pAyv/Hz. Thus, if we suppose that

standards.. Various analyses on this ‘.‘aliasi_ng” problem hame laser detuningAr?.__ ) is equal to o less than 50 MHz
been published for standards operating either in the puIs[Pl(g], the effect oféIlaS;Sﬁ;rough the light shift is of the order

[21], [22] or continuous [23]-[25] mode. ) 15 1 L
We have experimentally evaluated the effect of the PM noiz,gI L103- 1077 It is therefore negligible at present. The

Stability (o, (1 5)) 1-10° 4107 110" 116" 1.10™

These values are obtained using (2), the PM noise of (1), and the meas
PM noise coefficients.

on the clock stability in our particular setup [16]. The tota§ ser frequency noisEirase:) strongly depends on the type

effect of the PM noise is f laser and locking system. According to previously reported

measurements [28], the spectral density of laser frequency
noise is typically 5 kHZ+/Hz. Thus, with a dc level of 2—8A
and (3), we obtain

Oy (T)PM noise — Z 022715‘1’(2nfnz . 7-_1/2 (2)

bv lock
n=1 Dl_gl 67/1aser ~ 5 kHz — —==

~2-10713.  (4)
Vclock
where Sg is spectral density of PM noise ar@h, are the  This simple estimate shows that the effect of laser frequency
phase noise coefficients. With the setup described in Figh@ise (through the light shift) on the clock short-term stability
(switch on position a) we added narrow-band PM noidé not negligible at the 103 level. It is therefore necessary
centered on the different harmonics f and measured, (7) 0 evaluate more accurately this contribution to the clock
as a function of the PM noise. Thus, we could evaluate tfestability.
phase noise coefficients and, with the PM noise given by (1)3) Effect of Laser Frequency Noise on the Stabilityfe
determine the limit imposed by the microwave synthesizg?fopose the following measurement to determine the effect of
The results are summarized in Table II. The total limit on th&1aser ON the clock short-term stability. This method is similar
short-term stability wag - 10~13 7=1/2. It could be reduced t0 the method used to evaluate the effect of the photodetector
by one order of magnitude with a notch filter on the secoritfise (A) and the microwave PM noise (B). It consists of
harmonic. adding frequency noise to the laser beam and measuring the
clock stability as a function of the added noise. Then, by
measuring the intrinsic laser frequency noise, we can calculate
C. Light Shift Effects the overall effect. Two different techniques can be used to add
ise on the laser frequency. The first technique consists of
ding calibrated current noise on the current driver of the
ser. The second technigue consists of using an AOM and

Different authors have reported experimental and theoretidy
studies on light shift in laser-pumped rubidium frequenc

standards [6]-[10], [14], [15]. These studies help in estimatin di . the drivina rf sianal. Unfortunatel h

the effect of light shift on the clock stability, but an accurat INg NOISE on the driving 1 signal. Lnfortunately, we have

evaluation of its contribution to the overall clock instability id1ot pen.‘or.me(.j either (.Jf thesg measu_r(_eme.nts yet .

still lacking. To our knowledge, only one study has directl 4) Eliminating the Light Shift Coefﬁ%entZero-I|g-h.t-sh|ft

measured the effect of light shift on the medium-term stabili%oem(;?m can b? ?]bta:;nfefd for the Rb.D, transmonr;. by

of a laser-pumped rubidium standard [26]. The main reason rf:%e aﬁjustn}elnt 0 ;E € buner gaz pressure [15].Io:nbt IS casle,

that the two effects presented in the previous paragraph (A atng effect of laser frequency and intensity wou e greatly

B) were dominant. Since in our clock these two effects ha\;gduced.

been reduced, it is useful to reanalyze the light shift more

carefully. We present our measurements and propose a rfdwOther Effects

method for evaluating the effect of light shift. Other important effects, related to the microwave frequency
The light shift coefficients near the zero-light-shift frestabilization loop, degrade the frequency stability of the stan-

quency (s = 0), in our experimental setup, are given bydard [28]. In particular, significant AM noise is present in our

(3) [14], [15]. In both cases, the laser was tuned so that thexal oscillator signal. We estimated that its component at the

F = 2 hyperfine level of the ground state was depopulatechodulation frequency produces a shift of the clock frequency
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Fig. 3. Short-term stability of the Rb clock of Fig. 1.
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