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ABSTRACT

This paper introduces an application of adaptive filterin
in a noise-canceling configuration that detects code de
and multipath in GPS using a simplified GPS sign
model.  An adaptive filtering process which allows 
receiver to accommodate for changes in the environm
surrounding the antenna is used.  In this algorithm, filt
weights from an LMS adaptive noise-canceling algorith
enable the receiver to determine the code delay from 
569
direct satellite signal as well as the delay and attenuatio
of the multipath.  A simplified signal model which
includes idealized GPS C/A-code processing, multipath
signals of varying delay and amplitude, interference of
other C/A-codes, and quantization noise is used for th
preliminary demonstration.  Plans for application of this
technique to a more realistic GPS signal model and
assessment of the computational requirements are als
discussed.

INTRODUCTION

Correlation permits the receiver to lock onto the PRN
code and use it for measuring pseudorange to the satellit
The autocorrelation function for a short PN sequence
where s(t)=±1 is  [Navigation, 1980]
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The symmetry of the peaks in the function helps the
receiver to find the true code delay.  This peak occurs
every millisecond (1023 chips transmitted at 1.023 MHz)
which simplifies acquisition so we can use the waveform
for accurate time and consequently pseudorang
measurements. The autocorrelation spectra for a typica
Gold Code like the GPS C/A-code is shown in Figure 1.
[Spilker(a), 1994, p. 99].
______________________________________________
*  Contribution of the National Institute of Standards and
Technology, not subject to copyright in the United States.
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Figure 1:  Gold Code Spectra for C/A-code [Spilker(a)
1994].

Figure 2 shows an ideal correlation peak when multipa
is not present.  Here the spacing of the correlator is n
critical because the receiver can use the midpoint of t
peak as the true delay of the signal.  Figure 3 shows t
correlation peak with multipath present and shows th
location of the early and late samples of the correlato
In this case, the spacing of the correlator is direct
involved with the determination of the signal delay
because the midpoint of the peak is no longer the tr
occurrence of the code epoch.

Figure 2:  Correlation peak when multipath not present.

early sample late sample

-Tc Tc

τ-τ

No error regardless
of correlator spacing
- midpoint always at
peak
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Figure 3:  Correlation peak when distorted by multipat
The figure also shows the location of the early and l
samples for a receiver with wide sample spacing and w
narrow sample spacing [Enge, 1994].

One of the factors limiting performance of code-bas
differential GPS is multipath - the interference o
reflected signals on the receiver tracking of the dire
GPS signal.  A number of techniques have be
developed for reducing multipath including modification
to the code tracking loops, antenna designs, and ca
smoothing of code observations.  Currently receivers c
suppress the corruption of the direct signal by multipa
at delays greater 1.5 chips [Braasch, 1995; Enge, 19
However, if the delay of the multipath signal is less th
1.5 chips then the receiver must use carrier aiding and
narrow correlator spacing to reduce the influence 
multipath on receiver tracking.

Modern receivers use both coherent and noncohe
DLL (delay locked loop) operations to track the peak 
the autocorrelation function.  Average multipath error 
usually smaller with the coherent DLL;  however, th
coherent DLL can be disrupted by cycle slips, where
the noncoherent DLL continues to function regardless
the operation of the carrier phase-tracking loop.  By us
narrow correlation with the noncoherent DLL, one ca
reduce the maximum multipath error by a factor of 1
and eliminate multipath with relative delays of 1 chip 
greater when a 0.1 chip correlator spacing is us
[Braasch, 1995].

It is also possible to use antennas which mask out lo
elevation angles to reduce multipath from surfaces be
the antenna.  However, this becomes a problem if the u
is mobile and the antenna is changing its position relat
to the satellites, like an antenna on an airplane tha
banking.  Calibrating the multipath for static receiv
locations is possible, but may require large amounts
storage and computer power [Kee, 1994]. Van Nee [V

early sample late sample

-Tc Tc

τ-τ

error for
correlator
with wide
sample
spacing

error for correlator
with narrow spacing

τd = Tc/20

τd = Tc/2
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Nee, 1994] developed a technique called the Multipa
Estimating Delay Lock Loop (MEDLL) that greatly
reduces the multipath error by using multi-correlators fo
each channel.  However, this technique requires mo
hardware and computations within the receiver.

Recently Breivik et al. developed an SNR-based approa
to multipath correction in pseudorange measuremen
The results show up to 50% improvement in differentia
GPS but have some limitation due to a bias which must 
determined separately [Breivik, 1997].

In this paper we explore a way to detect and possib
reduce the effect of multipath in GPS pseudorang
measurements based on an adaptive filtering techniqu
This approach should be able to adjust to changin
multipath characteristics and thus could be applied 
stationary or mobile receivers.

ADAPTIVE FILTERING

In this section the fundamentals of adaptive filtering an
various ways to implement it are discussed.  A review o
the properties and behavior of the traditional adaptiv
filter is presented to illustrate how to detect code dela
and multipath in the GPS signal.

An adaptive filter is a self-optimizing, self-designing
system that changes its effects on a signal according to
environment.  It does this according to a specifie
performance measure.  In other words, it is a traine
system that repairs itself according to the situation
encountered over time.  Figure 4 shows the adapti
transversal filter with an output that can be written a
[Widrow, 1985]

y w x
l

L
k lk k l=

=
∑ =−

0
X Wk

T
k , (2)

Figure 4:  The adaptive linear combiner as a transvers
filter.  [Widrow, 1985]
where Xk = [xk xk-1 . . . xk-L+1]

T is the vector of current and
previous L-1 input values, and Wk = [w0k w1k . . . wLk]

T is

. .z-1 z-1 z-1

w0k
w1k wLk. .

∑ ∑

Desired
response

dk

Input
xk

Output
+
+ + +

− Error
εkyk
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the weight vector at time k.  It is the weight vector in this
equation that is used to adapt the filter so that the outpu
yk agrees as closely as possible with the desired response

The adaptation of Wk is accomplished by comparing the
output signal yk with a desired “training” signal dk and
then using the difference in this comparison to adjust or
optimize the weight vector and minimize this “error.”
The error signal is written as [Widrow, 1985]

ε k k k kd y d= − = − X Wk
T

k . (3)

Most adaptive processes are aimed at minimizing the
mean squared value or the average power of the erro
signal.  Using Equation (3) to obtain the instantaneous
squared error, we have

ε k k kd d2 2 2= + −W X X W X Wk
T

k k
T

k k
T

k . (4)

Now assuming that εk, dk and Xk are statistically stationary
we take the expected value of  Equation (4) over k and
find:

[ ] [ ] [ ] [ ]E E d E E dk k kε 2 2 2= + −W X X W X Wk
T

k k
T

k
T

k
T

k
T .(5)

Next define the input correlation matrix,

[ ]R X Xk k
T= E ,  (6)

and P as

[ ] [ ]P X       .  .  .    k= =E d E d x d x d xk k k k k k Lk0 1 , (7)

which is the vector of cross-correlations between the
desired response and the input components.  Now th
mean squared error (MSE) may be written as

ξ ε 

W RW P Wk
T

k
T

k
T

= = −

= + −

E E d y

E d

k k k

k

[ ] [( ) ]

[ ] .

2

2

2

2
(8)

Assuming that the input components and the desired
response input are stationary stochastic variables resul
in an MSE that is a quadratic function of the components
of the weight vector.  The resulting “bowl-shaped”
paraboloid is called the performance surface for these
weights.  The surface is always concave upward, becaus
the values of ξ are squared and therefore always positive
values.  The point at the bottom of the bowl is the point of
the minimum mean squared error, where we find the
optimal weight vector.  This is important because a
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quadratic performance function will always give a singl
global optimum; no local minima exist [Widrow,1985].

WEIGHT UPDATE ALGORITHMS

Graphical representation of the performance surfa
shows that the minimum error is attained by seeking th
minimum of the performance surface.  Using a weigh
update algorithm that moves in the opposite direction 
the gradient should seek the minimum of the performan
surface.  For instance,w wk k k+ = −1 µ∇  is the steepest

descent algorithm and adapts the weights, according
the adaptation constant µ, in a direction opposite to the
gradient ∇k.

The gradient of the performance surface, specified b
∇(ξ), can be obtained by differentiating Equation (8) t
obtain the column vector

∇ ≡ =








 = −∂ξ

∂
∂ξ

∂
∂ξ
∂

∂ξ
∂W

RW P
w w wo L1

2 2� . (9)

Then to obtain the minimum error the weight vector is s
to its optimal value, called W*, where the gradient is zero:

∇ = = −0 RW P*2 2 . (10)

If we assume that R is nonsingular and solve for W*, we
find that

W R P* 1= − . (11)

This is an expression of the Wiener-Hopf equation i
matrix form [Widrow, 1985].  Substituting this into
Equation (8), we can obtain the expression for th
minimum mean-square error as

[ ] [ ]ξ min k
2

kE d E d
2= − = −− ∗P R P P WT 1 T .  (12)

Unfortunately, the statistical properties of the desire
signal and the input signal are not always known, so w
can not directly compute the optimal weight vector for th
transversal filter.    This means that we must form a
estimate for the correlation matrix R and the cross-
correlation vector P to obtain an approximation to the
optimal Wiener solution.  We attempt to do this by usin
an iterative process that updates the optimal weight vec
according to the currently available input data and desir
signal data.  This is acceptable because many applicati
have slowly changing statistics that make it possible 
estimate these parameters in real time.  This is why usi
a gradient method is well suited for finding the minimum
of our performance surface.  The “bowl-shaped” surfac
gives the filter a way to slide its way to the bottom an
use gradient measurements as its guide.  The gradient a
572
eliminates the need for algorithms to estimate the
correlation matrix in order to estimate this minimum
correctly.  To illustrate the evolution of the gradient
estimation we show algorithms that use signal correlation
information as well as those that do not.

Initially, if we have information about the input signal
correlation, we may make use of Newton’s algorithm
[Widrow, 1985], where the weights are updated according
to

w wk k k+
−= − ∇1

1

2
R 1 . (13)

This algorithm may be generalized to include a step-size
parameter µ for controlling the convergence rate.  The
modified Newton’s algorithm [Widrow, 1985] is then

w wk k k+
−= − ∇1 µR 1 . (14)

However, if there is no input correlation matrix
knowledge the search for the minimum of the
performance surface can still be accomplished by usin
gradient information.  This is done by using the steepes
descent algorithm [Widrow, 1985]

w wk k k+ = −1 µ∇ , (15)

which systematically converges to the minimum,
assuming that µ is carefully chosen and if the statistical
characteristics of the desired and input signals are
constant or slowly changing.  Therefore, we need to find
an algorithm that finds an efficient estimate of the

gradient, which we call �∇ k .

THE LMS ALGORITHM

The LMS, least mean square, algorithm is an approac
that uses an estimate for the gradient to descend on th
performance surface [Widrow, 1985].  It is generally the
best choice for systems where the input vector and th
desired response are available at each iteration.  LM

estimates �∇ k  by using εk

2 itself, so at each iteration in the

adaptive process the gradient estimate is

�∇ =























=























= −k

k

k

L

k

k

k

L

k k

w

w

w

w

∂ε
∂

∂ε
∂

ε

∂ε
∂

∂ε
∂

ε

2

0

2

0

2 2� � X . (16)
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With this simple estimate of the gradient we can use
modified version of the method of steepest descent 
give the LMS algorithm [Widrow, 1985]:

W W

W X
k 1 k

k k

+ = − ∇
= +

µ
µε

�

,
k

k2
 (17)

where µ is the gain constant that regulates the speed a
stability of adaptation.  Theoretically the convergence o
the weight vector is assured in the transversal filter ca
when

0
1< <µ

tr [ ]R
[Widrow, 1985], (18)

where the eigenvalues, i.e., diagonal elements, of R must
be known.  For practical applications we use,

0
1

1
< <

+
µ

( )( )L V
,  (19)

where L+1 is the number of weights and V is the signal
power [Widrow, 1985].  This is useful because the term
(L+1)(V) estimates the trace of R.  Typically values of µ
on the order of a tenth of the upper bound given 
Equation (19) are used.  The LMS algorithm introduces
large component of noise into the system because 
gradient components are not averaged and therefore 
not form a smooth transition to the minimum of the
performance surface.  However, the noise is attenuated
the adaptive process because as time passes the adapt
serves as its own low-pass filter.  The value of the st
size µ can also be chosen to help reduce the overall no
that is introduced into the gradient estimation.

If the input signals are non-stationary and have varyin
power, it changes the value of the correlation matrix R
and consequently also changes the value for µ.  In this
case we can use the normalized LMS (NLMS) techniqu
[Haykin, 1996].  In this technique, the LMS value of µ is
updated along with the weight equation, using

µ
µ

=
+

~

( )a V
, (20)

where 0<~µ <2, a is a small positive constant to keep the

denominator greater than 0, and the power of the signa
calculated over a small moving window of the inpu
signal data.  This maintains a  mean of the signal near
because over the length of the windowed data the chan
in the mean is small enough to not change the sign
power significantly.  If the length of the window is not
small enough, a running mean needs to be comput
along with the adaptation.
573
on

The next section will discuss the simulated code dela
and multipath GPS signal and the results of using a
adaptive process to detect these delays.

GPS CODE SIMULATION

The GPS 1023 chip C/A-code was simulated using 
high-level computer language on a workstation [Krauss
1994].  It is assumed that the carrier had been removed 
frequency locking so that only the code was presen
Each bit in the code was initially sampled 10 times and
the full code was repeated 3 times resulting in a total o
30690 samples.  The PRN code chosen was for SV#
[ICD, 1993, p. 8, 30].

Figure 5:  Cross-correlation of 0.4 delayed signal with
direct signal.

Figure 5 shows the cross correlation of a direct signal an
a signal delayed by 0.4 chip with no multipath introduced
We see the shift to the left by 0.4 chips accordingly in th
correlation function.  The correlation is based upon a
single simulation.  The function which estimates the cros
correlation of the two sequences is set to normalize th
output sequence so that the autocorrelation at zero lag 
identically 1, corresponding to 0 dB. In Figure 6 zero
mean Gaussian noise is added to the signal (SNR = 0.
We still see a symmetric peak but the amplitude is 3 dB
lower and the side lobes are noisy.



d
h-
al
n
an

in
e
1)
he
he
in
n
.

or
 to
in

t

.

e
s
r

t

t

e

Figure 6:  Cross-correlation of 0.4 delayed signal with
direct signal - SNR = 0.4.

Multipath is then added to the signal without noise an
the cross correlation is shown in Figure 7.  The multipat
corrupted signal is created from the delayed direct sign
by attenuating the signal from an amplitude of 1 to a
amplitude of 0.2 and delaying the attenuated signal by 
additional 0.3 chip, and finally adding it back to the
original delayed-direct signal.  We see a slight change 
the symmetry of the correlation function shown in Figur
6 as compared to Figure 4.  In Figure 8 noise (SNR = 
was added to the multipath signal to see how it affects t
correlation peak.  In this case we see a slight shift in t
amplitude of the peak to the left and a decrease 
amplitude of the peak.  This will lead to larger errors i
tracking when half chip correlation spacing is used
Tracking error using a narrow correlator with half chip
spacing is shown in Figures 7 and 8.  With 0.1 chip err
this makes the estimated correlation error comparable
that of the standard correlator errors shown earlier 
Figures 2 and 3.

Figure 7:  Cross-correlation of 0.4 delayed direct with
0.3 delayed multipath signal without noise.
574
Figure 8: Cross-correlation of 0.4 delayed direct with 0.3
delayed multipath signal with an SNR of 1.

USING ADAPTIVE ALGORITHM TO IDENTIFY
DELAY AND MULTIPATH - DISCUSSION OF
TEST CASES

Figure 9 shows the structure for the LMS algorithm and
how it is applied to determine the delay of the C/A-code
between the satellite and the receiver.  First we will
develop the case where no noise nk is added to the
received satellite signal dk.  In this case xk is the receiver-
generated C/A-code, the simulated code.   The other inpu
to the filter sk is a delayed version of the receiver
generated C/A-code xk.  A delay of 0.3 chip   (z-ma, ma=3)
was introduced into the signal sk  to simulate the offset of
the code in transmission from the satellite to the receiver
Therefore, dk is the simulated satellite signal at the
receiver. This offset is used in calculating the range from
the receiver to the satellite.  Of course this offset must b
adjusted by the number of complete C/A-code repeat
between the satellite time of transmission and the receive
apparent time of reception.

Figure 10 shows the results of the adaptation.  The weigh
vector of the filter modifies the signal xk to make it look
like the signal dk.  By using the output of the weight
vector we can determine the 0.3 chip delay of the direc
satellite signal from the receiver generated signal.  The
small bumps past 1 chip delay appear to be artifacts of th
number of samples per bit of the 1023 bit length of the
PRN code.



Figure 9:  Block diagram of adaptive filter for GPS C/A-code delay detection.
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Figure 10: Adaptive filter weight output values for filter
order = 20.

CODE DELAY DETECTION - WITH NOISE

For the next simulation, noise nk is added to the signal to
create a representation for a more realistic receive
satellite signal dk.  The noise nk is modeled as Gaussian
with zero mean and represents the noise introduced to 
signal up to the low-noise amplifier in the receiver
Figure 11 shows the results of the adaptation
Simulations dependably determined the code delay pe
down to a SNR of 0.004, that is, -23.9 dB.

Now we add multipath to the incoming signal and se
how the adaptation performs.  The filter block diagram
for this case is shown in Figure 12.  We will disregard th
noise component nk for this adaptation.  The multipath is
created by delaying and attenuating the incoming delay
575
satellite signal.  Once again the receiver generated C/A-
code is the xk signal into the adaptive filter.  The desired
signal dk is the delayed version of the direct signal plus
the multipath signal, delayed from the tardy direct signal.
For this adaptation we use a direct signal delayed by 0.3
chip (z-ma, ma=3) and the multipath delayed by 0.2 chip (z-

mb, mb=2) and attenuated by 0.2 (gain) from the delayed
direct signal.  The adaptation should occur such that the
weights of the filter indicate the delay of the direct signal
from the receiver generated signal, as well as the
multipath delay from the direct signal.  Figure 13 shows
the weight output vector for this adaptation.  The peaks
determine the correct delays and maintain an amplitude
ratio of 0.2/1 indicating the ratio of amplitudes between
the original multipath and direct signals.

Figure 11:  Adaptive filter weight output values for SNR
= 0.004 (-23.9 dB) and filter order = 20.



Figure 12:  Block diagram of adaptive filter for GPS C/A-code delay and multipath detection.
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Figure 13:  Adaptive filter weight output values with
multipath for filter order = 20.

MULTIPATH DETECTION - WITH NOISE

Once again, we add the noise nk back into received
satellite signal simulation dk and repeat the adaptation.
Figure 14 shows the process with an SNR of 1.  Th
adaptation was able to reliably determine the multipa
delay down to an SNR of 0.4, shown in Figure 15.  Onc
the SNR was lower than 0.4 it became difficult to locat
the multipath peak from the noise in the adaptation. A
576
SNR decreases, so does the value of µ.  This is because µ
is dependent upon the average signal power.  This mea
that it will take more signal samples for the adaptation
process to converge, which could account for the loss o
detection with SNR values less than 0.4.  For all of thes
simulations 30690 samples were used (3 repeats of th
full C/A-code) for the adaptation.

Figure 14 :  Adaptive filter weight output values for SNR
= 1 and filter order = 20.
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Figure 15:  Adaptive filter weight output values for SNR
= 0.4 and filter order 20.

MULTIPATH DETECTION - QUANTIZED dk

Simulations were also performed with a 9-level quantize
on dk, the incoming satellite signal.  This simulates noise
that is added by the A/D converter in the receiver.  Whe
the quantizer was used, the filter was able to pick out th
multipath only down to an SNR of 0.6 (see Figure 16)
This is expected because the quantizer introduces mo
error into the system and therefore degrades th
performance of the filter.  Figure 17 shows the quantize
with an SNR of 1 to show the effect of noise on the
output in comparison to Figure 14 where a quantizer i
not used.

Figure 16:  Adaptive filter weight output for 9-level
quantizer on dk with a SNR of 0.6 and filter order = 20.
57
e

Figure 17:  Adaptive filter weight output for 9-level
quantizer on dk with a SNR of 1 and filter order = 20.

MULTIPATH DETECTION - INTERPOLATION

The resolution of the peak in the signal chip delay
adaptation can be increased with more repeats of ea
code bit in the simulation code.  Initially we had 10 points
per chip setting the delay resolution limit at 0.1 chip.  The
increased resolution is shown in Figures 20-22, fo
various levels of SNR, where the number of C/A-code
chip repeats was increased from 10 to 100 usin
interpolation (see Figure 19).  Interpolation is used, which
increases the number of samples per bit by insertin
zeroes between the original data values and then low pa
filtering the data [Krauss, 1994].  This essentially
performs an exponential interpolation between dat
points.  Figure 18 shows the adaptation using 100 poin
per chip with no noise introduced to the received satellit
signal dk.  By increasing the number of points we are able
to see a more narrow, defined peak at the delay location
Once again the bump in the data beyond 1 chip delay 
somehow related to the number of samples per bit of th
C/A-code in the simulation.

Figure 18:  Adaptive filter weight output values for filter
order = 200, no noise present.
7



1 1 1

-1 -1 -1 -1 -1 -1 -1
Start of Code,

i.e. Code Epoch

Time

100 300200 400 500 600 700 800 900 1000Sample
Number

Figure 19:  First 10 chips of C/A-code for PRN signal,
100 repeats per bit [ICD,1993].

Figure 20:  Adaptive filter weight output with an SNR of
1 and filter order =200, using interpolated data.

Figure 21:  Adaptive filter weight output with an SNR of
0.3 and filter order =200, using interpolated data.
57
Figure 22:  Adaptive filter weight output with an SNR of
0.1 and filter order =200, using interpolated data.

USING TWO DIFFERENT PRN CODES

The following plots show the results of using two
different PRN codes in the adaptation.  There should be
no correlation between the two signals and therefore no
peak in the correlation or adaptation of the two signals.
Figure 23 shows that the correlation of the two codes
gives small noise-like bumps, but no large peaks.  The
next figure shows the noisy output given by the adaptive
filter.  This is good because it shows that the filter will not
lock onto the wrong satellite signal if the desired signal is
not present.

Figure 23:  Correlation of two different PRN codes.  The
codes used were for SV#1 and SV#2 in this figure.
8
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Adaptive Filter Weights Output
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Chip Delay

0.80.80.8

Figure 24:  Adaptive filter weight output for two
different PRN codes (SV#1 and SV#2).

COMPUTATION TIME AND CONVERGENCE
RATE

The computation time for these simulations through th
filter with 21 weights and 10 samples/bit takes about 
minute on the workstation.  With 21 weights and 10
samples/bit, it takes about 14 minutes.  When the size 
the weight vector is increased to 1500, the simulatio
takes approximately 37 minutes with 100 samples/bit an
3 minutes with 10 samples/bit.  It appears that increasin
the number of samples per bit increases the time by abo
the same factor - 10 times.  Increasing the number 
weights in the weight vector from 20 to 2000 increase
the time through each iteration of the loop by over 
times, going from about 3 ms per iteration to about 9 m
per iteration through the loop.  However the algorithm
processes the 10 sample/bit code just as quickly as it do
the 100 sample/bit code with the same number of weigh
In other words, we do not gain or lose anything b
increasing the samples per bit using this algorithm
Furthermore, the value of µ does have an effect on the
convergence time of the filter and is directly related to th
SNR value used for each simulation.

We also tested how long the adaptation took as a functi
of SNR to converge to a threshold value on the pea
amplitude value of the chip delay in the weight vector
As the SNR increased (as well as µ) it took fewer
iterations through the filter to reach the threshold.  As th
threshold amplitude was increased performance beca
limited by the number of samples available for processin
(30690 samples = 3 repeats of the 1023 bit code samp
10 times per bit) as we went to lower SNR values.  Th
smallest SNR we were able to achieve was 0.18 (-7.
dB) with a threshold amplitude of  0.75 on a scale of 0 t
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1.  SNR values were calculated using the first 50
samples of the simulated multipath and noise code.

ANALYSIS OF RESULTS

The LMS algorithm was able to determine the code dela
between the incoming signal and the received signal wi
SNR levels of 0.004 (-23.98 dB) or greater.  When
multipath is present the code delay can be found down 
an SNR of 0.4 (-3.98 dB), using 1/10 chip resolution
Using 100 points per chip we can find the multipath pea
with an SNR of 0.6 (-2.21 dB).  These results suggest th
the adaptive algorithm can accurately locate the cod
delay even at small signal-to-noise ratios.  Howeve
when multipath is present the algorithm is increasingl
influenced by the SNR.  This problem is attributable to
the time, or number of signal samples, needed for th
adaptation to converge.  This is because the SN
determines the value of µ which controls the rate of
adaptation for the algorithm.

Modern GPS receivers are able to determine the co
delay to better than 0.01 chip [Van Dierendonck, 1995
Using interpolation this software adaptation is
comparable to the performance of current receivers th
use DLLs, usually in hardware, to track the code delay.

FUTURE EXPLORATION

It is possible than an adaptive process could b
implemented in lieu of the DLL in an all software
receiver.  It would provide a way to determine the dela
of the code and also provide more information about th
multipath at the receiver antenna.

Another area of investigation would be the difference in
the amount of time used in the adaptive algorithm versu
that required of the DLL.   On the workstations each
simulation took approximately 1 minute to complete
using a smaller weight vector, but the code processin
time could be reduced by eliminating unneeded variable
When interpolation was used the storage of yk and εk led
to much longer processing times than when we onl
stored the updated weight values for the adaptation.

To further evaluate the performance of this approach w
need a more realistic signal model.  One area to resea
would be with uneven sampling of the code stream
Currently the simulation assumes that the frequencies 
the received signal and the receiver signal are syntonize
However in real applications the received signa
frequency has been Doppler shifted and therefore “slide
the code, forcing the receiver to sample the code 
uneven intervals.  Implementing this could make th
9
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simulation more realistic and make it possible to achiev
detection at even lower SNR levels.

ACKNOWLEDGMENTS

This work was performed while the first author was a
NIST Graduate fellow at the University of Colorado at
Boulder.  She was sponsored by the NIST Time and
Frequency Division and extends her gratitude for their
support.

REFERENCES

[Braasch, 1995]  Braasch, M.S. “ Multipath Effects,” in
Parkinson, B.W. et al. (ed.), Global Positioning System :
Theory and Applications, Progress in Astronautics an
Aeronautics, Vol. 163, pp. 547-568, AIAA, 1996.

[Breivik, 1997]  Breivik, K., B. Forssell, C. Kee, P. Enge
T. Walter, “Estimation of Multipath Error in GPS
Pseudorange Measurements,”  Navigation:  Journal of the
Institute of Navigation, Vol. 44, No. 1, Spring 1997.

[Enge, 1994]  Enge, P.K.  “The Global Positioning
System: Signal, Measurements and Performance
International Journal of Wireless Information Networks
Vol. 1, No. 2,  pp. 83-105, Plenum Publishing
Corporation, 1994.

[Etter, 1991]  Etter, D.M. “Adaptive Signal Processing,
tutorial paper in IASTED 91, 1991.

[Etter, 1993]  Etter, D.M.  Engineering Problem Solving
with MATLAB.  Prentice Hall, Inc., N.J., 1993.

[GPS NAVSTAR, 1991]  GPS NAVSTAR:  Global
Positioning System - User’s Overview.  NAVSTAR
Global Positioning System Joint Program Office an
ARINC Research Corporation, 5th Edition, CA, March
1991.

[Gross, 1992]  Gross, J.H.  Multirate Adaptive Filtering in
Subbands, Masters Thesis, University of Colorado,
Electrical Engineering Department 1992.

[Haykin, 1996]  Haykin, S.  Adaptive Filter Theory.
Third Edition.  Prentice Hall.  New Jersey, 1996.

[Hofmann-Wellenhof, 1994]  Hofmann-Wellenhof, B.,
Lichtenegger, H. and Collins, J.,  GPS: Theory and
Practice.  Third, revised edition.  Springer-Verlag,
Vienna, 1994.
of
,”

58
[ICD, 1993]  ICD-GPS-200, NAVSTAR GPS Joint
Program Office and ARINC Research Corporation, CA
1993.

[Kee, 1994] Kee, C. and Parkinson, B.W., “Calibration o
Multipath Errors on GPS Pseudorange Measurement
Proceedings of the ION-GPS-94, 1994.

[Klobuchar, 1996]  Klobuchar, J.A., “Ionospheric Effect
on GPS,” in Parkinson, B.W. et al. (ed.), Global
Positioning System : Theory and Applications, Progre
in Astronautics and Aeronautics, Vol. 163, pp. 485-515,
AIAA, 1996.

[Krauss, 1994]  Krauss, T.P., Shure, L., and Little, J.H.
Signal Processing Toolbox:  For Use with MATLAB.  The
Mathworks, Inc., 1994.  Simulations were done using a
SGI Workstation and MATLAB software.  *Certain
commercial software and equipment are identified in th
paper in order to adequately specify the experimen
procedure.  Such identification does not impl
recommendation or endorsement by the National Institu
of Standards and Technology, nor does it imply that t
materials  or equipment identified are necessarily the b
available for the purposes.

[Navigation, 1980]  Janiczek, P.M., ed.  Global
Positioning System - Papers published in Navigatio.
Institute of Navigation, 1980.

[NAVSTAR, 1991]  NAVSTAR GPS User Equipment 
Introduction. NATO, NAVSTAR-GPS Joint Program
Office, Los Angeles Air Force Base, CA, February 1991

[Spilker(a), 1996]  Spilker, Jr., J.J., “GPS Signal Structu
and Theoretical Performance,” in Parkinson, B.W. et a
(ed.), Global Positioning System : Theory and
Applications, Progress in Astronautics and Aeronautic,
Vol. 163, pp. 57-119, AIAA, 1996.

[Spilker(b), 1996]  Spilker, Jr., J.J., “Tropospheric Effect
on GPS,” in Parkinson, B.W. et al. (ed.), Global
Positioning System : Theory and Applications, Progre
in Astronautics and Aeronautics, Vol. 163, pp. 517-546,
AIAA, 1996.

[Spilker(c), 1996]  Spilker, Jr., J.J. and Parkinson, B.W
“Overview of GPS Operation and Design,” in Parkinson
B.W. et al. (ed.), Global Positioning System : Theory and
Applications, Progress in Astronautics and Aeronautic,
Vol. 163, pp. 29-55, AIAA, 1996.

[Van Dierendonck, 1992]  Van Dierendonck, A.J.
Fenton, P. and Ford, T.,  “Theory and Performance 
Narrow Correlator Spacing in a GPS Receiver
0



s

d
l

n,
g

-

Navigation.  Journal of the Institute of Navigation, Vol.
39, No. 3, pp. 265-283, Fall 1992.

[Van Dierendonck, 1995]  Van Dierendonck, A.J., “GPS
Receivers,” in Parkinson, B.W. et al. (ed.), Global
Positioning System : Theory and Applications, Progres
in Astronautics and Aeronautics, Vol. 163, pp. 329-407,
AIAA, 1996.

[Van Nee, 1992]  Van Nee, R.D.J., “GPS Multipath an
Satellite Interference,”  Proceedings of ION 48th Annua
Meeting, August 1992.

[Van Nee, 1994]  Van Nee, R.D.J., Siereveld, J., Fento
P.C., and Townsend, B.R.,  “The Multipath Estimatin
Delay Lock Loop:  Approaching Theoretical Accuracy
Limits,”  IEEE 1994 Position Location and Navigation
Symposium, Las Vegas, Nevada, April 1994, pp. 246
251.

[Widrow, 1985]  Widrow, B. and Stearns, S.D. Adaptive
Signal Processing.  Prentice Hall, Inc., N.J., 1985.
581


