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ABSTRACT

This paper introduces an application of adaptive filtering
in a noise-canceling configuration that detects code delay
and multipath in GPS using a simplified GPS signal
model. An adaptive filtering process which allows a
receiver to accommodate for changes in the environment
surrounding the antenna is used. In this algorithm, filter
weights from an LMS adaptive noise-canceling algorithm
enable the receiver to determine the code delay from the
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direct satellite signal as well as the delay and attenuation
of the multipath. A simplified signal model which
includes idealized GPS C/A-code processing, multipath
signals of varying delay and amplitude, interference of
other C/A-codes, and quantization noise is used for the
preliminary demonstration. Plans for application of this
technigue to a more realistic GPS signal model and
assessment of the computational requirements are also
discussed.

INTRODUCTION

Correlation permits the receiver to lock onto the PRN
code and use it for measuring pseudorange to the satellite.
The autocorrelation function for a short PN sequence
where s(t)=1 is [Navigation, 1980]

)

The symmetry of the peaks in the function helps the
receiver to find the true code delay. This peak occurs
every millisecond (1023 chips transmitted at 1.023 MHz)

which simplifies acquisition so we can use the waveform

for accurate time and consequently pseudorange
measurements. The autocorrelation spectra for a typical
Gold Code like the GPS C/A-code is shown in Figure 1.

[Spilker(a), 1994, p. 99].

* Contribution of the National Institute of Standards and
Technology, not subject to copyright in the United States.
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Figure 1. Gold Code Spectra for C/A-code [Spilker(a),
1994].

Figure 2 shows an ideal correlation peak when multipath
is not present. Here the spacing of the correlator is not
critical because the receiver can use the midpoint of the
peak as the true delay of the signal. Figure 3 shows the
correlation peak with multipath present and shows the
location of the early and late samples of the correlator.
In this case, the spacing of the correlator is directly
involved with the determination of the signal delay
because the midpoint of the peak is no longer the true
occurrence of the code epoch.
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Figure 2: Correlation peak when multipath not present.
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Figure 3: Correlation peak when distorted by multipath.
The figure also shows the location of the early and late
samples for a receiver with wide sample spacing and with
narrow sample spacing [Enge, 1994].

One of the factors limiting performance of code-based
differential GPS is multipath - the interference of
reflected signals on the receiver tracking of the direct
GPS signal. A number of techniques have been
developed for reducing multipath including modifications
to the code tracking loops, antenna designs, and carrier
smoothing of code observations. Currently receivers can
suppress the corruption of the direct signal by multipath
at delays greater 1.5 chips [Braasch, 1995; Enge, 1994].
However, if the delay of the multipath signal is less than
1.5 chips then the receiver must use carrier aiding and/or
narrow correlator spacing to reduce the influence of
multipath on receiver tracking.

Modern receivers use both coherent and noncoherent
DLL (delay locked loop) operations to track the peak of
the autocorrelation function. Average multipath error is
usually smaller with the coherent DLL; however, the
coherent DLL can be disrupted by cycle slips, whereas
the noncoherent DLL continues to function regardless of
the operation of the carrier phase-tracking loop. By using
narrow correlation with the noncoherent DLL, one can
reduce the maximum multipath error by a factor of 10,
and eliminate multipath with relative delays of 1 chip or
greater when a 0.1 chip correlator spacing is used
[Braasch, 1995].

It is also possible to use antennas which mask out lower
elevation angles to reduce multipath from surfaces below
the antenna. However, this becomes a problem if the user
is mobile and the antenna is changing its position relative
to the satellites, like an antenna on an airplane that is
banking. Calibrating the multipath for static receiver

locations is possible, but may require large amounts of
storage and computer power [Kee, 1994]. Van Nee [Van



Nee, 1994] developed a technique called the Multipath
Estimating Delay Lock Loop (MEDLL) that greatly
reduces the multipath error by using multi-correlators for
each channel. However, this technique requires more
hardware and computations within the receiver.

Recently Breivik et al. developed an SNR-based approach
to multipath correction in pseudorange measurements.
The results show up to 50% improvement in differential
GPS but have some limitation due to a bias which must be
determined separately [Breivik, 1997].

In this paper we explore a way to detect and possibly
reduce the effect of multipath in GPS pseudorange
measurements based on an adaptive filtering technique.
This approach should be able to adjust to changing
multipath characteristics and thus could be applied to
stationary or mobile receivers.

ADAPTIVE FILTERING

In this section the fundamentals of adaptive filtering and
various ways to implement it are discussed. A review of
the properties and behavior of the traditional adaptive
filter is presented to illustrate how to detect code delay
and multipath in the GPS signal.

An adaptive filter is a self-optimizing, self-designing
system that changes its effects on a signal according to its
environment. It does this according to a specified
performance measure. In other words, it is a trained
system that repairs itself according to the situations
encountered over time. Figure 4 shows the adaptive
transversal filter with an output that can be written as
[Widrow, 1985]

)

L
Ve = 3 Wi Xeo) = XgW,

Desired
response

Figure 4: The adaptive linear combiner as a transversal
filter. [Widrow, 1985]

whereX, =[x % . .. %,.]" is the vector of current and
previous L-1 input values, and/, = [w, w, . .. w,]"is
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the weight vector at time k. It is the weight vector in this
equation that is used to adapt the filter so that the output
y, agrees as closely as possible with the desired response.

The adaptation ofV, is accomplished by comparing the
output signaly, with a desired “training” signati, and
then using the difference in this comparison to adjust or
optimize the weight vector and minimize this “error.”
The error signal is written as [Widrow, 1985]

£ =di — Yy = d = XgW,y . (3)
Most adaptive processes are aimed at minimizing the
mean squared value or the average power of the error
signal. Using Equation (3) to obtain the instantaneous
squared error, we have

2 =dZ+ WX X W, —2dX W . (4)
Now assuming that, d_andX, are statistically stationary

we take the expected value of Equation (4) over k and
find:

E[eﬁ]: E[olf]+wkT E[xkx{]\/\/kT 2 E[ dx [}NJ.(S)
Next define the input correlation matrix,
RzE[xkxE], (6)

andP as
P=E[dXi]= E[d % d % dxd (@

which is the vector of cross-correlations between the

desired response and the input components. Now the
mean squared error (MSE) may be written as
£ =E[e}] = H(d - ¥ ]
(8)

= E[dZ]+W,/RW, - 2P "W, .

Assuming that the input components and the desired
response input are stationary stochastic variables results
in an MSE that is a quadratic function of the components
of the weight vector. The resulting “bowl-shaped”
paraboloid is called the performance surface for these
weights. The surface is always concave upward, because
the values of are squared and therefore always positive
values. The point at the bottom of the bowl is the point of
the minimum mean squared error, where we find the
optimal weight vector. This is important because a



guadratic performance function will always give a single
global optimum; no local minima exist [Widrow,1985].

WEIGHT UPDATE ALGORITHMS

Graphical representation of the performance surface
shows that the minimum error is attained by seeking the
minimum of the performance surface. Using a weight
update algorithm that moves in the opposite direction of
the gradient should seek the minimum of the performance
surface. For instancey,; = w, —pu0, is the steepest

descent algorithm and adapts the weights, according to
the adaptation constapt in a direction opposite to the
gradient],.

The gradient of the performance surface, specified by
(&), can be obtained by differentiating Equation (8) to
obtain the column vector

_0¢ Dot oa¢ o¢ O
O=—= — - ——[F2RW-2P. (9
ow %WO ow, GWLE ®)

Then to obtain the minimum error the weight vector is set
to its optimal value, callew’, where the gradient is zero:

O0=0=2RW -2P. (10)

If we assume thaR is nonsingular and solve fal’, we
find that

*

w =R7P. (11)
This is an expression of the Wiener-Hopf equation in
matrix form [Widrow, 1985]. Substituting this into
Equation (8), we can obtain the expression for the
minimum mean-square error as

& min = E[dkz]—PTR‘1P= E[df]— PT WY (12)

Unfortunately, the statistical properties of the desired
signal and the input signal are not always known, so we
can not directly compute the optimal weight vector for the
transversal filter. This means that we must form an
estimate for the correlation matrik and the cross-
correlation vectorP to obtain an approximation to the
optimal Wiener solution. We attempt to do this by using
an iterative process that updates the optimal weight vector
according to the currently available input data and desired
signal data. This is acceptable because many applications
have slowly changing statistics that make it possible to
estimate these parameters in real time. This is why using
a gradient method is well suited for finding the minimum
of our performance surface. The “bowl-shaped” surface
gives the filter a way to slide its way to the bottom and
use gradient measurements as its guide. The gradient also
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eliminates the need for algorithms to estimate the
correlation matrix in order to estimate this minimum
correctly. To illustrate the evolution of the gradient
estimation we show algorithms that use signal correlation
information as well as those that do not.

Initially, if we have information about the input signal

correlation, we may make use of Newton's algorithm
[Widrow, 1985], where the weights are updated according
to

1__
Wk+1 = Wk _ER 1Dk' (13)

This algorithm may be generalized to include a step-size
parametep for controlling the convergence rate. The
modified Newton’s algorithm [Widrow, 1985] is then

Wye1 = W ~HR 7O, (14)
However, if there is no input correlation matrix
knowledge the search for the minimum of the
performance surface can still be accomplished by using
gradient information. This is done by using the steepest
descent algorithm [Widrow, 1985]

Wieep = Wy — My, (15)
which systematically converges to the minimum,
assuming thap is carefully chosen and if the statistical
characteristics of the desired and input signals are

constant or slowly changing. Therefpvee need to find
an algorithm that finds an efficient estimate of the

gradient, which we callﬁk .

THE LMS ALGORITHM

The LMS, least mean square, algorithm is an approach
that uses an estimate for the gradient to descend on the
performance surface [Widrow, 1985]. It is generally the

best choice for systems where the input vector and the
desired response are available at each iteration. LMS

estimatesﬁk by usinge?” itself, so at each iteration in the
adaptive process the gradient estimate is

g o
[PWo [ ﬂ%NOD

ﬁkzg EZZSk% =25 X (16)
Pe2 O PEx O
w g Pw



With this simple estimate of the gradient we can use a
modified version of the method of steepest descent to
give the LMS algorithm [Widrow, 1985]:

Wia =Wy — uly (17)
=Wy +2ug Xy,

where is the gain constant that regulates the speed and

stability of adaptation. Theoretically the convergence of

the weight vector is assured in the transversal filter case

when

cy<_ L
TS

[Widrow, 1985], (18)
where the eigenvalues, i.e., diagonal element& ofust
be known. For practical applications we use,

1

_— 19
(L) (19)

o<u

where L+1 is the number of weights axds the signal
power [Widrow, 1985]. This is useful because the term
(L+1)(V) estimates the trace &. Typically values ofu

on the order of a tenth of the upper bound given in
Equation (19) are used. The LMS algorithm introduces a
large component of noise into the system because the
gradient components are not averaged and therefore do
not form a smooth transition to the minimum of the
performance surface. However, the noise is attenuated by

the adaptive process because as time passes the adaptation

serves as its own low-pass filter. The value of the step
sizep can also be chosen to help reduce the overall noise
that is introduced into the gradient estimation.

If the input signals are non-stationary and have varying
power, it changes the value of the correlation magix
and consequently also changes the valueuforin this
case we can use the normalized LMS (NLMS) technique
[Haykin, 1996]. In this technique, the LMS valuejofs
updated along with the weight equation, using

fi
@+v)’

H= (20)

where 0<ﬁ <2, ais a small positive constant to keep the

denominator greater than 0, and the power of the signal is
calculated over a small moving window of the input
signal data. This maintains a mean of the signal near 0,
because over the length of the windowed data the change
in the mean is small enough to not change the signal
power significantly. If the length of the window is not
small enough, a running mean needs to be computed
along with the adaptation.
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The next section will discuss the simulated code delay
and multipath GPS signal and the results of using an
adaptive process to detect these delays.

GPS CODE SIMULATION

The GPS 1023 chip C/A-code was simulated using a

high-level computer language on a workstation [Krauss,

1994]. Itis assumed that the carrier had been removed by
frequency locking so that only the code was present.

Each bit in the code was initially sampled 10 times and

the full code was repeated 3 times resulting in a total of

30690 samples. The PRN code chosen was for SV#1
[ICD, 1993, p. 8, 30].

Correlation of 0.4 Delayed with Direct Signal
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Figure 5: Cross-correlation of 0.4 delayed signal with
direct signal.

Figure 5 shows the cross correlation of a direct signal and
a signal delayed by 0.4 chip with no multipath introduced.
We see the shift to the left by 0.4 chips accordingly in the
correlation function. The correlation is based upon a
single simulation. The function which estimates the cross
correlation of the two sequences is set to normalize the
output sequence so that the autocorrelation at zero lag is
identically 1, corresponding to O dB. In Figure 6 zero
mean Gaussian noise is added to the signal (SNR = 0.4)
We still see a symmetric peak but the amplitude is 3 dB
lower and the side lobes are noisy.



Correlation of 0.4 Delayed with Direct Signal - SNR =0.4
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Figure 6: Cross-correlation of 0.4 delayed signal with
direct signal - SNR = 0.4.

Multipath is then added to the signal without noise and
the cross correlation is shown in Figure 7. The multipath-
corrupted signal is created from the delayed direct signal
by attenuating the signal from an amplitude of 1 to an
amplitude of 0.2 and delaying the attenuated signal by an
additional 0.3 chip, and finally adding it back to the
original delayed-direct signal. We see a slight change in
the symmetry of the correlation function shown in Figure
6 as compared to Figure 4. In Figure 8 noise (SNR = 1)
was added to the multipath signal to see how it affects the
correlation peak. In this case we see a slight shift in the
amplitude of the peak to the left and a decrease in
amplitude of the peak. This will lead to larger errors in
tracking when half chip correlation spacing is used.
Tracking error using a narrow correlator with half chip
spacing is shown in Figures 7 and 8. With 0.1 chip error
this makes the estimated correlation error comparable to
that of the standard correlator errors shown earlier in
Figures 2 and 3.

Cross correlation Code with 0.4 Delayed Direct + 0.3 Delayed Multipath
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Figure 7: Cross-correlation of 0.4 delayed direct with
0.3 delayed multipath signal without noise.
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Figure 8: Cross-correlation of 0.4 delayed direct with 0.3
delayed multipath signal with an SNR of 1.

USING ADAPTIVE ALGORITHM TO IDENTIFY
DELAY AND MULTIPATH - DISCUSSION OF
TEST CASES

Figure 9 shows the structure for the LMS algorithm and
how it is applied to determine the delay of the C/A-code
between the satellite and the receiver. First we will
develop the case where no noisgis added to the
received satellite signal. In this case, is the receiver-
generated C/A-code, the simulated code. The other input
to the filter s is a delayed version of the receiver
generated C/A-code. A delay of 0.3 chip (Z, ma=3)

was introduced into the signgl to simulate the offset of
the code in transmission from the satellite to the receiver.
Therefore, d, is the simulated satellite signal at the
receiver. This offset is used in calculating the range from
the receiver to the satellite. Of course this offset must be
adjusted by the number of complete C/A-code repeats
between the satellite time of transmission and the receiver
apparent time of reception.

Figure 10 shows the results of the adaptation. The weight
vector of the filter modifies the signa) to make it look

like the signald,. By using the output of the weight
vector we can determine the 0.3 chip delay of the direct
satellite signal from the receiver generated signal. The
small bumps past 1 chip delay appear to be artifacts of the
number of samples per bit of the 1023 bit length of the
PRN code.
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Figure 9: Block diagram of adaptive filter for GPS C/A-code delay detection.
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Figure 10: Adaptive filter weight output values for filter
order = 20.

CODE DELAY DETECTION - WITH NOISE

For the next simulation, noise is added to the signal to
create a representation for a more realistic received
satellite signald,. The noisen,_is modeled as Gaussian
with zero mean and represents the noise introduced to the
signal up to the low-noise amplifier in the receiver.
Figure 11 shows the results of the adaptation.
Simulations dependably determined the code delay peak
down to a SNR of 0.004, that is, -23.9 dB.

Now we add multipath to the incoming signal and see
how the adaptation performs. The filter block diagram
for this case is shown in Figure 12. We will disregard the
noise componemt, for this adaptation. The multipath is
created by delaying and attenuating the incoming delayed
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satellite signal. Once again the receiver generated C/A-
code is thex, signal into the adaptive filter. The desired
signald, is the delayed version of the direct signal plus
the multipath signal, delayed from the tardy direct signal.
For this adaptation we use a direct signal delayed by 0.3
chip (Z™, ma=3) and the multipath delayed by 0.2 chip (z
™ mb=2) and attenuated by 0.2 (gain) from the delayed
direct signal. The adaptation should occur such that the
weights of the filter indicate the delay of the direct signal
from the receiver generated signal, as well as the
multipath delay from the direct signal. Figure 13 shows
the weight output vector for this adaptation. The peaks
determine the correct delays and maintain an amplitude
ratio of 0.2/1 indicating the ratio of amplitudes between
the original multipath and direct signals.

Adaptive Filter Weight Output - Filter Order=20, SNR=0.004
08 T T T

Amplitude

D.IS 1I 1I5 2

Chip Delay
Figure 11: Adaptive filter weight output values for SNR
=0.004 (-23.9 dB) and filter order = 20.
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Figure 12: Block diagram of adaptive filter for GPS C/A-code delay and multipath detection.

Adaptive Filter Weight Qutput SNR decreases, so does the valup.of his is becausg
o0 is dependent upon the average signal power. This means
08 /\ that it will take more signal samples for the adaptation
/\ process to converge, which could account for the loss of
detection with SNR values less than 0.4. For all of these

simulations 30690 samples were used (3 repeats of the
full C/A-code) for the adaptation.
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Figure 13: Adaptive filter weight output values with = .
multipath for filter order = 20. < .
MULTIPATH DETECTION - WITH NOISE . S [ =
Once again, we add the noise back into received o2
satellite signal simulatiom, and repeat the adaptation. 0 02 04 08 08 0 4 e 18 20
Figure _14 shows the process with an _SNR of 1. .The Figure 14 : Adaptive filter weight output values for SNR
adaptation was able to reliably determine the multipath  _ 1 and filter order = 20

delay down to an SNR of 0.4, shown in Figure 15. Once
the SNR was lower than 0.4 it became difficult to locate
the multipath peak from the noise in the adaptation. As

576



Adaptive Filter Weight Output

0.8 SNR = 0.4, Filter Order = 20

oo\
os 1
sl ||
sl ||

a| ||

]

0

Amplitude

-0.1

0.2

0 02 04 06 08 10 12 14 16 1.8 20
Chip Delay

Figure 15: Adaptive filter weight output values for SNR
= 0.4 and filter order 20.

MULTIPATH DETECTION - QUANTIZED d,

Simulations were also performed with a 9-level quantizer
ond, the incoming satellite signal. This simulates noise
that is added by the A/D converter in the receiver. When
the quantizer was used, the filter was able to pick out the
multipath only down to an SNR of 0.6 (see Figure 16).
This is expected because the quantizer introduces more
error into the system and therefore degrades the
performance of the filter. Figure 17 shows the quantizer
with an SNR of 1 to show the effect of noise on the
output in comparison to Figure 14 where a quantizer is
not used.
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Figure 16: Adaptive filter weight output for 9-level
quantizer ord, with a SNR of 0.6 and filter order = 20.
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Figure 17: Adaptive filter weight output for 9-level
quantizer ord, with a SNR of 1 and filter order = 20.
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MULTIPATH DETECTION - INTERPOLATION

The resolution of the peak in the signal chip delay
adaptation can be increased with more repeats of each
code bit in the simulation code. Initially we had 10 points
per chip setting the delay resolution limit at 0.1 chip. The
increased resolution is shown in Figures 20-22, for
various levels of SNR, where the number of C/A-code
chip repeats was increased from 10 to 100 using
interpolation (see Figure 19). Interpolation is used, which
increases the number of samples per bit by inserting
zeroes between the original data values and then low pass
filtering the data [Krauss, 1994]. This essentially
performs an exponential interpolation between data
points. Figure 18 shows the adaptation using 100 points
per chip with no noise introduced to the received satellite
signald,. By increasing the number of points we are able
to see a more narrow, defined peak at the delay locations.
Once again the bump in the data beyond 1 chip delay is
somehow related to the number of samples per bit of the
C/A-code in the simulation.
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Figure 18: Adaptive filter weight output values for filter
order = 200, no noise present
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Figure 19: First 10 chips of C/A-code for PRN signal,
100 repeats per bit [ICD,1993].
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Figure 20: Adaptive filter weight output with an SNR of
1 and filter order =200, using interpolated data.
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Figure 21: Adaptive filter weight output with an SNR of
0.3 and filter order =200, using interpolated data.
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Adaptive Filter Weight Output
SNR=0.1, Filter Order 200
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Figure 22: Adaptive filter weight output with an SNR of
0.1 and filter order =200, using interpolated data.

USING TWO DIFFERENT PRN CODES

The following plots show the results of using two
different PRN codes in the adaptation. There should be
no correlation between the two signals and therefore no
peak in the correlation or adaptation of the two signals.
Figure 23 shows that the correlation of the two codes
gives small noise-like bumps, but no large peaks. The
next figure shows the noisy output given by the adaptive
filter. This is good because it shows that the filter will not
lock onto the wrong satellite signal if the desired signal is
not present.

Cross-correlation of 2 different PRN codes
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Figure 23: Correlation of two different PRN codes. The

codes used were for SV#1 and SV#2 in this figure.




Adaptive Filter Weights Output
Filter Order 1500, 10 samples/bit, 2 PRN codes
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Figure 24: Adaptive filter weight output for two
different PRN codes (SV#1 and SV#2).
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COMPUTATION TIME AND CONVERGENCE
RATE

The computation time for these simulations through the
filter with 21 weights and 10 samples/bit takes about 1
minute on the workstation. With 21 weights and 100
samples/bit, it takes about 14 minutes. When the size of
the weight vector is increased to 1500, the simulation
takes approximately 37 minutes with 100 samples/bit and
3 minutes with 10 samples/bit. It appears that increasing
the number of samples per bit increases the time by about
the same factor - 10 times. Increasing the number of
weights in the weight vector from 20 to 2000 increases
the time through each iteration of the loop by over 3
times, going from about 3 ms per iteration to about 9 ms
per iteration through the loop. However the algorithm
processes the 10 sample/bit code just as quickly as it does
the 100 sample/bit code with the same number of weights.
In other words, we do not gain or lose anything by
increasing the samples per bit using this algorithm.
Furthermore, the value qf does have an effect on the
convergence time of the filter and is directly related to the
SNR value used for each simulation.

We also tested how long the adaptation took as a function
of SNR to converge to a threshold value on the peak
amplitude value of the chip delay in the weight vector.
As the SNR increased (as well @3 it took fewer
iterations through the filter to reach the threshold. As the
threshold amplitude was increased performance became
limited by the number of samples available for processing
(30690 samples = 3 repeats of the 1023 bit code sampled
10 times per bit) as we went to lower SNR values. The
smallest SNR we were able to achieve was 0.18 (-7.44
dB) with a threshold amplitude of 0.75 on a scale of 0 to
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1. SNR values were calculated using the first 500
samples of the simulated multipath and noise code.

ANALYSIS OF RESULTS

The LMS algorithm was able to determine the code delay
between the incoming signal and the received signal with
SNR levels of 0.004 (-23.98 dB) or greater. When
multipath is present the code delay can be found down to
an SNR of 0.4 (-3.98 dB), using 1/10 chip resolution.
Using 100 points per chip we can find the multipath peak
with an SNR of 0.6 (-2.21 dB). These results suggest that
the adaptive algorithm can accurately locate the code
delay even at small signal-to-noise ratios. However,
when multipath is present the algorithm is increasingly
influenced by the SNR. This problem is attributable to
the time, or number of signal samples, needed for the
adaptation to converge. This is because the SNR
determines the value gf which controls the rate of
adaptation for the algorithm.

Modern GPS receivers are able to determine the code
delay to better than 0.01 chip [Van Dierendonck, 1995].
Using interpolation this software adaptation is
comparable to the performance of current receivers that
use DLLs, usually in hardware, to track the code delay.

FUTURE EXPLORATION

It is possible than an adaptive process could be
implemented in lieu of the DLL in an all software
receiver. It would provide a way to determine the delay
of the code and also provide more information about the
multipath at the receiver antenna.

Another area of investigation would be the difference in
the amount of time used in the adaptive algorithm versus
that required of the DLL. On the workstations each

simulation took approximately 1 minute to complete

using a smaller weight vector, but the code processing
time could be reduced by eliminating unneeded variables.
When interpolation was used the storagey,cdnde, led

to much longer processing times than when we only
stored the updated weight values for the adaptation.

To further evaluate the performance of this approach we
need a more realistic signal model. One area to research
would be with uneven sampling of the code stream.
Currently the simulation assumes that the frequencies of
the received signal and the receiver signal are syntonized.
However in real applications the received signal
frequency has been Doppler shifted and therefore “slides”
the code, forcing the receiver to sample the code at
uneven intervals. Implementing this could make the



simulation more realistic and make it possible to achieve
detection at even lower SNR levels.
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