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Wavelet Variance, Allan Variance, and Leakage

David A. Howe and Donald B. Percival

Abstract— Wavelets have recently been a subject of great
interest in geophysics, mathematics and signal processing. The
discrete wavelet transform can be used to decompose a time
series with respect to a set of basis functions, each one of which
is associated with a particular scale. The properties of a time
series at different scales can then be summarized by the wavelet
variance, which decomposes the variance of a time series on
a scale by scale basis. The wavelet variance corresponding to
some of the recently discovered wavelets can provide a more
accurate conversion between the time and frequency domains
than can be accomplished using the Allan variance. This increase
in accuracy is due to the fact that these wavelet variances give
better protection against leakage than does the Allan variance.

I. INTRODUCTION AND SUMMARY

HE analysis of a time-ordered set of phase measurements

{z:} often falls into one of three categories. The first
approach treats {z.} as a series to be expressed in terms of
global basis functions such as orthogonal polynomials. The
second approach uses the mean square of the second difference
of {z;} at various sampling intervals 7 to define the Allan
variance. The third approach is the windowed discrete Fourier
transform (DFT), which is used to estimate the power spectrum
Sz(-) for {z:}.

The problems with the first approach (polynomial fits)
are that many coefficients might be needed to adequately
represent the phase measurements, and local features in {z;}
can be misrepresented because the coefficients are calculated
using global basis functions. Potential problems with the
second approach include sensitivity to deterministic drifts and
leakage because the transfer function for the Allan variance
has substantial sidelobes (this leakage can also occur in the
unwindowed DFT). The problems with the third approach
are dependence on the chosen window and high variability
because the windowed DFT is inherently narrowband.

Wavelet analysis tries to address the above problems with
one unified approach. First, wavelet analysis is based upon the
discrete wavelet transform, a “time and scale” representation
of {z.} that is hierarchical rather than global and hence
can represent localized features easily. Second, the wavelet
transform is narrowband at low frequencies and broadband at
high frequencies. The Allan variance of fractional frequency
deviates is in fact a wavelet variance corresponding to the
Haar wavelet. Wavelet variances based upon higher order
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wavelets are natural extensions to the Allan variance and
have potential advantages over the Allan variance in terms
of leakage and insensitivity to deterministic drifts. Plots of the
square root of the wavelet variance versus averaging time (or
scale) yield curves analogous to the usual “o /7" curve for the
Allan variance. As is true for the Allan variance, the wavelet
variance can be regarded as an octave-band estimate of the
spectrum and hence does not suffer from the high variability of
the windowed DFT. Because higher order wavelets provide a
better approximation to octave-band filters than does the Haar
wavelet, it is easier to translate higher order wavelet variances
into reasonable spectral estimates.

Even though wavelets are a relatively new topic, there
is already an enormous literature about them—see [1] and
references therein. In what follows, we merely motivate the
use of the wavelet variance, with emphasis on the problem of
leakage (see [3] for more details).

II. POWER-LAW NOISE PROCESSES

The phase difference {z;} between two clocks measured
as a function of time is generally modeled by a deterministic
part (quantified by a time of set, frequency offset, and fre-
quency drift, but ignored in what follows) and a random part.
Historically, pure power-law noise processes have played a
vital role in characterizing the random part, which means that
the power spectrum S (-) for {z;} is proportional to f* for
positive Fourier frequencies, f. Correctly determining « is a
primary objective of spectral analysis. Once the exponent o
has been determined, we derive estimates of how a clock’s
timekeeping ability might evolve [4].

III. NARROWBAND VERSUS BROADBAND PROCESSING

Spectrum analyzers typically compute a power spectrum for
a time series {z;} by windowing the series using {h.}, and
then taking the squared modulus of the DFT of the windowed
series {h¢z:}. The purpose of windowing is to reduce a
potential bias known as leakage, in which power “leaks” from
high power into low power portions of the spectrum. The
windowed DFT is inherently narrowband and hence highly
variable across frequencies, which makes interpretation of
DFT-based spectral estimates somewhat problematic for the
novice.

Because narrowband processing is not required for broad-
band processes such as power-law processes, the time and
frequency community handles power-law noise processes us-
ing the Allan variance [4]. This variance can be interpreted as
the variance of a process after being subjected to approximate
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bandpass filters of constant (). The Allan variance can be
used to form a broadband spectral estimate using well-known
conversion schemes [4]. However, while broadband processing
produces less variable spectral estimates than those of nar-
rowband processing, both types of processing are subject to
leakage. While leakage has long been recognized as a concern
in spectral analysis, its importance in broadband processing
has not received much attention. One rationale for the wavelet
variance is that higher order wavelets effectively address the
leakage problem.

IV. WAVELETS AND THE “SCALE DOMAIN”

Suppose that zg, 1, -, zx_; form a sequence {x;} of N
time-ordered phase measurements. Let us define Y |z,|? = £,
to be the “energy” in our finite set of measurements. We can
then trivially regard |z,|? as the contribution to the energy &,
due to the component of {z,} with time index ¢. We can also
regard {x;} as the “time domain” representation of our phase
measurements.

Next, consider the DFT of {z.}, namely,

N-1
1 ,
Xy = — E zieT 2kt k=0,1,---,N—-1
VN i3

where X}, is the kth DFT coefficient and is associated with
the kth Fourier frequency fi, = k/N. Parseval’s theorem tells
us that 3~ [X,|? = £,. Hence we can regard | X |? as the con-
tribution to the energy £, due to the component of {X},} with
frequency index &, and we can regard { X} as the “frequency
domain” representation of our phase measurements. The time
and frequency domain representations are equivalent because
we can recover {z.} from {X} using the inverse DFT.

As is true for the DFT, the discrete wavelet transform
(DWT) of {z;} preserves the energy &, in a set of coefficients;
however, unlike the DFT, these coefficients are not indexed
by frequency, but rather doubly indexed by time shift j and
“scale” 7. The DWT is defined in terms of a “mother wavelet”
¥() and an associated “scaling function” (), where ¥(-)
can be any member of a large class of functions satisfying
certain stringent conditions [1]. Assuming for convenience that
N = 27 for some positive integer p, we define 1; .(-) as a
shifted and scaled version of 1/(-):

i, () = f%¢<2i __7.7>

where 7 = 1,2, 4,---,N/2 indexes a “power of 2” scale,
while j = 0,27, 47,---,N — 27 indexes shifts in time
commensurate with scale 7. The DWT coefficients are the
doubly indexed series {d; .} defined by

djr =Y 2 (1)

along with ¢ = Y ,¢(t/N)/V/'N. Parseval’s theorem tells us
that 3°_ . |d; -|? + |c|* = £,. Hence we can regard |d;, ,|?
as the contribution to the energy £, due to the component of

{d;, -} with time shift index j and scale index 7, and we can
regard {d;, .} as the “scale domain” (or “time/scale” domain)
representation of {x;}. This representation is fully equivalent
to the time and frequency domain representations because we
can recover {x} from {d; ;} and c using the inverse DWT.

As an example of a scale domain representation, let us set
our mother wavelet ¢(-) equal to the Haar wavelet 1 (f227)(.),
which we define here as (22 (¢) = —1 for 0 < ¢ < 1/2;
pHaan(@) = 1 for 1/2 < ¢ < 1; and pHaad(y) = ¢
otherwise. The corresponding scaling function ¢(-) is given
by [¢(H227)(.)| (a relationship unique to the Haar wavelet).
For the Haar wavelet, we find that

T — 4 —_
dj,’r‘ = \/7;[-75(2}'4-2)771(7—) - $(2j+1)r—1(7’)]

where
T—1
Ti(T) = Z:L‘t_j/T.
j=0

Let us now define the wavelet variance for scale 7 as
o2(7) = var{d; ,}/7. Under the assumption that E{d, ,} =
0 so that the variance of d; . is equal to E{d? _}, a natural
estimator of this wavelet variance is

N/27-1 N/27-1

2
Z diT = N Z d?,‘r‘
0 7=0

j=

1 1
~2 _ 1
7.(r) = T N/2r

Specializing to the Haar wavelet, we find that

N/2r—1
N T _ _
52(r) = N Y Fejazyr—1(7) = Fajpnyra (T2

7=0

If the z,’s represented average fractional frequency deviations
rather than phase measurements, then the above would be the
well-known “nonoverlapped” estimator of the Allan variance.
The Allan variance therefore corresponds to a wavelet vari-
ance when the Haar wavelet is used with average fractional
frequency deviations. When viewed from the perspective of
wavelets, the Allan variance is thus not a “time domain”
quantity, but rather is a “scale domain” or “time/scale domain”
quantity.

V. DETERMINATION OF POWER-LAW NOISE TYPES

As a function of time, two-oscillator phase deviations typi-
cally resemble a realization of a composite power-law process,
whose spectrum can be described as S.(f) = Y ha|f|%,
where the summation is over a finite number of different
a’s (usually a subset of @ =0, —1, —2, -3, and —4). For
pure power-law processes, there are well-known formulas for
converting from the Allan variance to the frequency domain
[4]. For composite power-law processes, this conversion can
become problematic for the Allan variance. To see this, let
o2(7) represent this variance. We can then write

1/2
sz(f)Sz(f) df

o) =
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Fig. 1. Modulus squared of the transfer function for the Allan variance (left
column) D, wavelet variance (middle) and Do wavelet variance (right)
times power-law spectra S, (-) proportional to f° (top row), f~2 (middle)
and f~* (bottom) for scale 7 = 4. The integrals of the shaded areas yield
the appropriate variance for 7 = 4.
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Fig. 2. NIST-7 versus hydrogen maser phase measurements (top plot) and
estimated o.(7) versus 7 (bottom plot) for the Allan variance (connected
curve) and the D4 wavelet variance (crosses).

where F,(-) is the modulus squared of the transfer function
associated with the Allan variance at scale 7 [2]. The shaded
areas in the left column of plots in Fig. 1 show the product
Fr(f)Sz(f) versus f for the Allan variance for three pure
power-law spectra and scale 7 = 4. The integral of each
shaded area gives 02(4) for the appropriate pure power-law
process. In the octave-band interpretation of the Allan vari-
ance, 02(4) should roughly reflect the power in the spectrum
in the frequency interval [1/47, 1/27]. For 7 = 4, this interval
is [1/16, 1/8] and is delineated on each plot by a pair of thin
vertical lines. If the filters associated with the Allan variance
were perfect octave-band filters, the shaded area in each plot
would be entirely contained between the vertical lines. The
amount of the shaded area that lies outside of the vertical lines
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Fig. 3. Time-synchronization phase measurements using the NIST satellite
two-way transfer modem configured in an in-cabinet loop test (top plot) and
estimated o (7) versus 7 (bottom plot) for the Allan variance (connected
curve) and the D4 wavelet variance (crosses).

represents the contribution to the Allan variance attributable to
leakage. These plots indicate that there is substantial leakage
for the Allan variance. This leakage is most pronounced for
white PM (S.(f) o f°, in the top left plot). If we now
consider a composite power-law process dominated between
the vertical lines by a power-law with a different exponent
than the one displayed in the plots of Fig. 1, we can see the
potential problem with leakage, namely, that the integral of
Fr(f)Sz(f) (the Allan variance) can be influenced mainly
by values of f outside of the vertical lines and hence cannot
accurately reflect the values of S.(f) between the vertical
lines.

Fig. 1 also shows corresponding plots for the wavelet vari-
ance using the D4 (middle column) and Dyq (right column)
“extremal phase” wavelets [1]. The D, wavelet was chosen
because it is “one order up” from the Haar wavelet (and
closely mimics the performance of the so-called modified
Allan variance [4]), while the Do wavelet is an example of
an even higher order wavelet. The D,y wavelet variance for
scale 7 = 4 reflects the spectrum in the passband [1/16, 1/8]
to a-much better degree than the other variances because the
shaded areas are concentrated between the vertical lines to a
higher degree for the Dy wavelet variance.

VI. EXAMPLES

We present two examples using the wavelet variance with
phase measurements. The top plot of Fig. 2 shows phase
measurements recorded every 100 s over a 3.7 day interval
comparing NIST-7 with a hydrogen maser. The bottom plot
shows the estimated Allan standard deviation (square root of
the Allan variance) versus scale 7 (the connected curve) and
also the estimated D, wavelet standard deviation versus 7 (the
crosses). The vertical portion of each cross delineates a “one
sigma” (68.3%) confidence interval for the true D4 wavelet
standard deviation. The Allan and D, wavelet standard de-
viations agree fairly well here, although there are two scales
(7 = 3200 and 6400 s) for which the Allan standard deviation
is just inside the confidence limits for the D, wavelet standard
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deviation. Use of the D4 wavelet here tells us that leakage is
not a major probiem with the Allan variance for these phase
measurements.

The top plot of Fig. 3 shows phase measurements
recorded every 40 s over a half day interval reflecting time-
synchronization using the NIST satellite two-way transfer
modem. The bottom plot here shows the same quantities
as in the bottom plot of Fig. 2. While the Allan and D,
standard deviations agree quite well in the smallest three and
largest scales, there is significant difference in the middle three
scales; moreover, the difference is consistent with leakage in

the Allan variance since the Allan variance is higher than the
D, variance.

REFERENCES

[1] I Daubechies, Ten Lectures on Wavelets. Philadelphia: SIAM, 1992.
[2] C. A. Greenhall, “A shortcut for computing the modified Allan Vari-
ance,” inProc. 46th Ann. Freq. Control Symp., 1992, pp. 262-264.

[3] D. A. Howe and D. B. Percival, “Wavelet analysis for synchronization
and timekeeping,” Proc. 48th Ann. Freq. Control Symp., submitted for
publication..

[4] D. B. Sullivan, D. W. Allan, D. A. Howe, and F. L. Walls, Eds.,
“Characterization of clocks and oscillators,” NIST Tech. Note 1337,
1990.



